Simulation of the e+ Source up to the CLIC Damping Ring

A. VIVOLI*

Thanks to:

L. RINOLFI (CERN)

R. CHEHAB (IPNL & LAL / IN2P3-CNRS)

O. DADOUN, F. POIRIER, P. LEPERCQ, A. VARIOLA (LAL / IN2P3-CNRS)

V. STRAKHOVENKO (BINP)

K. FLÖTTMANN (DESY)

* E-mail : Alessandro.Vivoli@cern.ch

- General scheme of the CLIC positron source
- Design and Simulation of the elements
- Conclusions

CLIC Main Beam Injector Complex (2009)

POSITRON SOURCES USING CHANNELING FOR ILC & CLIC

Gamma Production

By V. STRAKHOVENKO

CHANNELING: Ny = 111942 Ny / Ne⁻ = 18.657 Ey = 170.37 MeV Ee⁻ = 5 GeV

 $\sigma_r = 9.85 \text{ mm}$

09/11/2009

A. Vivoli, CLIC Positron Source, CLIC 2009, CERN 5

Positron Production

By O. DADOUN

Positron Beam Parameters at the target

N. e ⁺	Yield e ⁺/ e ⁻	$\mathbf{\mathcal{E}_{x}}_{rms}$	ε_y (rms) π mm mrad	< E> MeV	σ _ε MeV	σ₂ (rms)* mm
49500	8.25	63614	77903	54.51	115.5	0.301*

09/11/2009

Adiabatic Matching Device

- Length: L = 20-50 cm
- Magnetic field at the target : $B_0 = 6 T$
- Magnetic field at the end : B(L) = 0.5 T
- Magnetic Field Behaviour :

$$B(z) = \frac{B_0}{1 + \mu z}$$

AMD RESULTS

AMD	N*. e +	Yield	ε_χ	εy	< E >	σ _ε	σ _z *	ε_z
cm		e⁺/e⁻	π mm mrad	π mm mrad	MeV	MeV	mm	π cm MeV
20	16476	2.75	682	681	78.9	164.7	8.7*	136.2

6 cells, 2.0 GHz, Pierre Lepercq

Capture Section Design

Capture Results

To be optimized...

S	N. e ⁺	Yield	γε_x	γε_y	<e></e>	σ _ε	σ _z	ε_z
cm		e⁺/e⁻	π mm mrad	π mm mrad	MeV	MeV	mm	π cm MeV
4200	6186	1.03	6939	7051	214.1	35.0	9.9	33.5

Capture Section (+ Bunch Compressor)

09/11/2009

Bunch Compressor Design

09/11/2009

A. Vivoli, CLIC Positron Source, CLIC 2009, CERN

14

Bunch Compressor Elements

MAGNETIC CHICANE

09/11/2009

Bunch Compressor Results

S	N. e ⁺	Yield	γε_x	γε_y	<e></e>	σ _E	σ _z	ε_z
cm		e⁺/e⁻	π mm mrad	π mm mrad	MeV	MeV	mm	π cm MeV
5688	5895	0.98	22678	23479	211.8	26.0	7.7	18.35

09/11/2009

Injector Linac I (800 MeV)

From A. Ferrari et al., CLIC Note 626-655-723

Injector Linac II (1.5 GeV)

09/11/2009

A. Vivoli, CLIC Positron Source, CLIC 2009, CERN

19

Injector Linac III (2.86 GeV)

09/11/2009

A. Vivoli, CLIC Positron Source, CLIC 2009, CERN

20

Injector Linac Elements

Quadrupoles:

- Number: N = 196
- Length: L = 40-60 cm
- Gradient: G = 1.0 18.5 T/m
- Aperture: r = 5-15 cm

Accelerating cavities:

- Number of cavities: N = 49 TW
- Length:
- Average Gradient: $E_7 = 14.5 \text{ MV/m}$
- Frequency:

v = 2 GHz

L = 3 - 4.5 m

Drift Tubes:	
Number:	N = 50
• Aperture:	r = 5 cm
Length:	L = 200 - 280 cm

Injector Linac Results

S	N. e ⁺	Yield	γε_x	γε_y	<e></e>	σ _ε	σ _z	ε_z
cm		e⁺/e⁻	π mm mrad	π mm mrad	MeV	MeV	mm	π cm MeV
38550	4558	0.76	19804	14729	2825.1	129.5	6.2	69.5

 e^+ in PDR: 2747; Yield $e^+/e^- = 0.458$

Conclusions

- In order to have 4.6 10⁹ e⁺ in PDR we need:
 4.6 10⁹/0.458=10 10⁹ e⁻ in primary electron beam on crystal.
- According to *Dadoun et al.*, CLIC Note in preparation:
 PEDD = 22.14*10 10⁹ / 7.5 10⁹ = 29.5 J/g < 35 J/g but close.
- Optimization of the parameters for non-polarized positrons is necessary and will be done soon.
- Configuration at 500 GeV and double charge not possible with only 1 fixed tungsten target for the moment.
- Utilization of different codes for simulations (PARMELA, PLACET, GEANT4,...) will be done.

THANKS.

The End