Compton Linac for Polarized Positrons

V. Yakimenko, I. Pogorelsky, M. Polyanskiy, M. Fedurin BNL CERN, October 15, 2009

Polarized positron source: the concept

- A picosecond CO₂ laser pulse circulates in a ring cavity

- At each pass through the cavity the laser pulse interacts with a counter-propagating electron pulse generating yquanta via Compton scattering

- Optical losses are compensated by intracavity amplifier

- The λ-proportional number of photons per Joule of laser energy allows for higher γyield (compared to solid state lasers)

Polarized positron source

Linac Compton Source (LCS): Numbers

Positron beam requirement	ILC	CLIC
	2 10 ¹⁰ /3 nc	4 10 ^{9/} 0.6 nc
	2656@5Hz	312@50Hz
e- beam energy	4 / 6 GeV	
e- bunch charge	15 / 10 nC	6 / 4 nC
RMS bunch length (laser & e ⁻ beams)	3ps	
Number of laser IPS	10	5
Total Nγ/Ne ⁻ yield (in all IPs)	10	5
Ne ⁺ /Nγ capture	2/3%	
Ne⁺/Ne⁻ yield	20 / 30 %	10 / 15%
Total e⁺ yield	3 nC	0.6 nC
# of stacking	No stacking	
Normalized e+ emittance	6 / 4 mm rad	3 / 2 mm rad

Computer simulations: Model

Simulation resultsNatural CO2 $O^{16}:O^{18} = 50:50$ Number of passesNumber of passes02040101011101210141015101610171018101910</tr

1.5

1

Time, µs

2

Pulse energy, J

0.1

0.01

0.001

le-05

le-06

le-07

0

0.5

1

Time, µs

1.5

2

0.0001

Pulse energy dynamics

Pulse energy, J

0.1

0.01

0.001

0.0001

le-05

le-06

le-07

0

0.5

Pulse diagnostics

Laser system

Pulse duration: 3~5 ps (fwhm)

Possible configuration with 5 IPs and 1 laser amplifier

Wall plug power consideration

- ILC:
 - 3 10¹⁴ positrons/second;
 - 2% γ > e⁺ efficiency for 60 MeV γ

=> 150 kW γ beam

- Wall plug to γ for warm linac/CO2 is expected ~5-10%

Cross section for Pair production

Positron generation efficiency

$$N_{p}(E\gamma, Z, A, n, L) := 1 - \exp\left(-n \cdot L \cdot \int_{0.5}^{1} d\sigma(E\gamma, Z, A, x) dx\right)$$

Angular spread of positron beam

Positron beam size at the target exit

$$\sigma(\text{Ep},\text{E}\gamma,\text{L}_X_0,\text{X}_0) := \sigma\gamma(\text{E}\gamma) + \int_0^1 \sigma'_{\text{scat}}[\text{Ep},\text{L}_X_0(1-x)] \cdot \text{L}_X_0 \cdot \text{X}_0(x) dx$$

Normalized emittance at the target exit

Positron generation efficiency normalized by emittance

 $ff(E\gamma, x) := N_p(E\gamma, Z_W, A_W, n_W, x \cdot X_W) \cdot \left(\frac{0.1mm}{\epsilon N(E\gamma, x, X_W)}\right)$

Positron generation efficiency normalized by emittance and gamma beam power

 $ff(E\gamma, x) := N_p(E\gamma, Z_W, A_W, n_W, x \cdot X_W) \cdot \left(\frac{0.1 \cdot mm}{\epsilon N(E\gamma, x, X_W)}\right) \cdot \frac{240 MeV}{E\gamma}$

Positron generation efficiency normalized by transverse phase space

$$ff(E\gamma, x) := N_p(E\gamma, Z_W, A_W, n_W, x \cdot X_W) \cdot \left(\frac{0.1mm}{\epsilon N(E\gamma, x, X_W)}\right)^2$$

Positron generation efficiency normalized by transverse phase space and gamma beam power

 $ff(E\gamma, x) := N_p(E\gamma, Z_W, A_W, n_W, x \cdot X_W) \cdot \left(\frac{0.1 \cdot mm}{\epsilon N(E\gamma, x, X_W)}\right)^2 \cdot \frac{240 MeV}{E\gamma}$

Conclusion

- Polarized positron beam requirement for CLIC can be satisfied with Compton CO2/LINAC based gamma source
- Higher energy gamma beam is preferential for the thermal load on the target
- Shorter target is preferential when low emittance after target is needed (CLIC, LeHC ...)
- Total power consumption should be part of optimization for high positron demands (LeHC)
- Amplification in Isotope mixture will be tested shortly at ATF
- Seed pulse generation using solid state laser will be tested at ATF in ~year
- There is no funding/activity for regenerative cavity test