Forward Tracking; physics case, challenges and design

Forward Tracking and Vertexing; physics case, challenges and detector design

CLIC09,
CERN, Geneva,
October 12-16 2009

Marcel Vos (IFIC - U. Valencia/CSIC)

The scope of this talk

The forward region = $6^{\circ} < \theta < 30^{\circ}$

 $(0.1 \text{ rad} < \theta < 0.45 \text{ rad}, 0.9 < \cos \theta < 0.995, 1.5 < | \eta | < 3)$

in future e⁺e⁻ colliders

The physics case

Why is forward tracking performance important?

There is a series of very relevant physics processes where final state particles are predominantly emitted at small polar angle Mostly electrons, but also muons, t, b- and c-jets

From LEP-I to the ILC (to CLIC)

 P_{30}^{x} : Probability that final state product X is emitted at a polar angle $5 < \theta < 30^{\circ}$

Determine the relevance of the forward region in several key processes for a number of scenarios increasing center-of-mass energy

Multi-fermion final states

- 2 → 2 processes dominated LEP-I physics
- At larger √s, 2 → N, with N=4,6,8,... becomes more relevant

√s	91 GeV	500 GeV	3 TeV
machine	LEP-I	ILC	CLIC
<n<sub>jets></n<sub>	<3	5	6.4

As an example look at e⁺e⁻ → Z → tt, no ISR

√s	500 GeV	1 TeV	3 TeV
at least one top	0.15	0.17	0.22
at least one b	0.22	0.25	0.25
any fermion	0.59	0.51	0.4

Final states with many fermions (like ordinary SM tt-events) are hardly ever fully contained in the central detector

Tag a forward b-jet in 1 out of 4 events: requires vertexing

Top as a window on new physics: A_{FB}^{tt}

LC has a sensitivity to Z' resonances with masses that are well beyond it's direct reach due to interference of $\gamma/Z/Z'$.

Z' mass	SM	1 TeV	2 TeV	3 TeV	4 TeV
ee> tt Cross-section	91.7 ± 0.1	88.2 ± 0.2	93.8 ± 0.2	94.9 ± 0.2	94.9 ± 0.2
A _{FB} ^{tt}	0.41 ± 0.01	0.296 ± 0.007	0.390 ± 0.007	0.395 ± 0.007	0.398 ± 0.006
A tt (central)	0.36 ± 0.01	0.263 ± 0.007	0.346 ± 0.007	0.352 ± 0.007	0.351 ± 0.007

LO production cross-section (MadGraph) and top quark FB asymmetry for the ee--> tt process in the Standard Model and various sequential Z' scenarios. Errors are purely statistical, assuming 500 pb⁻¹.

Forward backward asymmetry is a very sensitive probe Not only $A_{_{FB}}^{}$, but also $A_{_{FB}}$ of b from tt, $A_{_{FB}}$ of μ from tt

A forward signal by construction: the (exact) center of the detector does not contribute

The importance of the t-channel

With increasing center-of-mass energy (from LEP-I to to LEP-II to ILC to CLIC) the importance of the t-channel increases

Example: scalar lepton production in SUSY (SPS benchmark point 1a)

The importance of the t-channel

polar angle distribution for s-lepton production

Fraction of forward s-electrons (θ < 30°) for s-electron pair production in SPS1a

@ 500 GeV

24 %

@ 1 TeV

50 %

0.04

0.02

Scan SUSY space (analytical expression for polar angle distribution)

100

150

polar angle θ (degrees)

50

t-channel

P 30 for scalar electron production in different machines and for different points of the Snowmass benchmark set

	m (e _R)	$m(\chi^0)$	500 GeV	800 GeV	1 TeV	2 TeV	3 TeV
SPS1a	135	99	30	46	54	70	73
SPS2	1451	79	-	-	-	-	10
SPS3	178	160	20	38	48	63	70
SPS4	416	118	-	-	21	65	72
SPS5	192	119	21	47	57	70	71
SPS6	236	189	8	27	38	64	73
SPS7	127	161	25	35	43	65	73
SPS8	176	137	24	44	47	66	72
SPS9	303	175	-	26	42	61	67

Scalar electron production is extremely peaked in the forward direction whenever the center-of-machine exceeds the masses of the s-electron and neutralino significantly.

Further high-mass SUSY points from post-WMAP catalogue H', $m_{eR} = 433 \text{ GeV}$, $m_{\chi_0} = 402 \text{ GeV}$, P = 42 % K', $m_{eR} = 1114 \text{ GeV}$, $m_{\chi_0} = 573 \text{ GeV}$, P = 17 % Very preliminary!

Higgs production

- Higgs-strahlung is the dominant Higgs production process for a low-mass at small \sqrt{s}
- Recoil-mass reconstruction is the tracking benchmark analysis par excellence
- A very central signature

Vector boson fusion processes are much more interesting at CLIC ZZH can be reconstructed using the recoil-mass analysis on extremely forward electrons

Di-boson production

The last example: di-boson production.

The polar angle distribution of electrons is extremely peaked in forward direction

Forward tracking physics case

Forward tracking requirements at the next e^+e^- collider

part I: the physics case for forward tracking

J. Fuster v, S. Heinemeyer s, C. Lacasta v, C. Mariñas v, A. Ruiz s, M. Vos v*

^s IFCA Santander

v IFIC Valencia

February 12, 2009

Abstract

In this note we explore the detector requirements of the forward tracking region for a future e^+e^- collider with a center-of-mass energy in the range from 500 GeV to 3 TeV. The relevance of the forward region is explored for a wide range of physics processes.

Little guidance for forward detector design from standard benchmark reactions ($\cos \theta < 0.95$)

Together with many other analyses and channels that we didn't discuss:

- A_{ER} in the bb and cc system
- Degenerate staus and neutralino
- center-of-mass energy determination using μμγ events

These examples make the physics case for orward tracking:

At a high-energy e⁺e⁻ collider several potentially very interesting physics analyses require excellent tracking and vertexing performance. These arguments become more urgent as the center-of-mass energy increases. Precise electron reconstruction is of particular importance.

Why is forward tracking challenging?

The material!
Hermetic coverage
Significant background at smallest radii
The unfavorable orientation of the magnetic field
Abundant low momentum tracks – pattern recognition

Material budget: an analogy

With all technological advances (Moore's law) we should be able to produce better cars than 60 years ago...

Citroen 2CV, 1949
A 375 cc engine yields 8 horse power and a top speed of 65 km/h.
Weighs ~ 500 kg
Consumes 4.4 l/100 km

Material budget: an analogy

And we are...

Centaurus (U. Minnesota)

2.5 - 3 horse power to reach 65 km/h.

Weighs 190 kg

Consumption: 0 on a sunny day

Material budget: an analogy

... but we can also take the technological advantage to improve other specifications. (we cannot push ALL specs to the limit!)

Audi Q7

280-350 horse power top speed 248 km/h. Weighs 2240 kg

Consumes: 10 l/100 km

Material budget: the LHC

The CMS tracker seen from the interaction point (TIB, leftmost figure) and from the calorimeter (TOB, rightmost figure)

- 30 % X_0 ,10 % λ_0 in central region sensitive, support and electronics
- 180 % X_0 50 % λ_0 in transition region add services: **cooling** and **cables** (power)
- 100 % X_0 , 35% λ_0 on edge of acceptance ($\eta = \pm 2.5$)

Clearly, not good for EM calorimetry..., but even tracking efficiency for anything but muons is limited by the material. Even if the material is not a particular problem of the forward region, it typically is worst there...

Figures from R. Ranieri, CERN-CMS-CR-2008-007

Pair background

Hit density = number of GEANT4 energy deposits per unit area per ILC bunch crossing

Hit density drops by several orders of magnitude from R=1.5 cm to R=6 cm

Typical area sensitive elements time resolution LC:

pixel: $25 \times 25 \, \mu \text{m}^2 = 6.25 \times 10^{-4} \, \text{mm}^2$ 100 BX

strips: $50 \, \mu \text{m} \times 10 \, \text{cm} = 0.5 \, \text{mm}^2$ 1 BX

Never underestimate a good micro-strip detector!

$\gamma\gamma \rightarrow hadrons$

From M. Battaglia, J.J. Blaising, J. Quevillon, CLIC note in preparation

An average of 22 charged particles is produced by $\gamma\gamma \to$ hadrons in each CLIC bunch crossing

Harder to beat this background by moving out to larger radius (typical p= 100s of MeV to several GeV)

Very forward distribution (factor 10 compared to central region)

Momentum resolution

ILC tracking specification: momentum resolution $\Delta(1/p_{\tau}) < 5 \times 10^{-5}$ (GeV⁻¹)

Precision required to reconstruct the Higgs boson using the recoil method, and to reconstruct SUSY end-points

ILD00 momentum resolution single muons

- ✓ Performance ~ stable down to 36°
- ✓ Steep loss between 6-36°

worse forward performance is the result of a combination of

- (a) magnetic field orientation (inevitable within 4π detector geometry)
- (b) loss of # of measurements in TPC

Momentum resolution

Momentum resolution for electrons (remember t-channel!!)

- ✓ Ongoing study (Jordi Duarte, IFCA): generate single-electron samples (private, but available for those interested)
- compare tracker-only momentum resolution of single electrons with the LOI results for muons
- ✓ Understand tracker-parameter dependence
 - → material!

ILD00 full simulation

10 GeV μ

10 GeV e

Ongoing study by Jordi Duarte

Impact parameter resolution

VXD: impact parameter resolution 5 – 10 μ m.

This precision is required to achieve excellent heavy flavour tagging, particularly for couplings of the Higgs boson to

charm (cτ ~150 $\mu m)$ and bottom (cτ ~ 450 $\mu m)$

ILD vertexing performance central:

a~1.7 μm

forward:

performance significantly worse than extrapolation of barrel formula with a=5,b=10

Unprecedented precision

(small pixels, 20x20 μm²)

Strongly reduce the multiple Coulomb scattering term

(material: 0.1 % X_0 / layer ~ 100 μ m Si)

polar angle θ (degrees)

Routing the barrel VXD services

Toy model for barrel+endcap vertex detector For details see A. Ruiz, ALCPG Albuquerque

The forward region clearly does NOT like the services routed along the beam pipe

If anything close to a few radiation lengths comes in the way between endcap and interaction point we can forget about forward vertexing

Pattern recognition

Clearly, 6-15 degrees is weakest region in ILD in terms of number of measurements. And remember:

- non-negligible pair background
- First disks close to interaction point (jets!)
- Abundant low-momentum tracks (loopers)

Ongoing study (Carmen Iglesias) Evaluate hit densities in tt events per disk and per petal (subdividing disks in 8,20 or 16 single-wafer segments)

- Average #hits/disk falls by a factor 3 due to reduced angular coverage of outermost disks
- Average #hits/petal falls even faster (outermost disks divided in 16 segments)

It is important to evaluate the hit density locally (jets)

 A significant probability to receive several hits/petal remains even in the outermost disk

	#hits	/disk	#hits	/petal
disk	avg.	peak	avg.	peak
FTD1	9	37	1.1	12
FTD2	5	27	0.6	10
FTD3	8	36	0.4	10
FTD4	6	29	0.3	9
FTD5	5	25	0.3	10
FTD6	4	23	0.2	5
FTD7	3	28	0.2	4

Pattern recognition

The combinatorial algorithm on stand-alone FTD is able to efficiently and cleanly reconstruct tracks down to a p_T of 100 MeV, provided:

R-segmentation: in innermost disks 500 μ m required, in outermost disks O (1cm)

Read-out speed: beyond several 10s of integrated bunch crossings the density of low momentum tracks prevents algorithm convergence

Material: an increase of the material beyond 1%/disk has dramatic consequences on pattern recognition

(see M. V., ILC meeting Sendai)

Working out a detailed design

Conclusions

There is significant physics to be gained (or lost) in the forward region (6-30°)

- •ISR (return-to-the-Z)
- Many-fermion final states
- •t-channel production of new light objects
- Vector boson fusion Higgs production
- Vector boson pairs

If the central tracking and vertexing is somewhat of a challenge, maintaining good performance at small polar angle is close to impossible

- Material
- Backgrounds
- Momentum resolution (B-field)
- Vertexing (barrel services)
- Pattern recognition

Backup slides

Towards an FTD design

- → Micro-strip module guidelines:
 - ROC on sensor
 - ▶ ROC thinned to 50-100 um
 - ▶ 6" wafers (approx 10 cm x 10 cm sensors)
 - ▲ 150 μ m thickness

➤ Two sensor layers per disk.

Conclusions

Interest of the forward region:

in several interesting physics cases the final state products have a strong preference for the forward region

Specific challenges:

momentum resolution under unfavorable field orientation impact parameter measurement for very forward tracks non-negligible background level (read-out speed) standalone pattern recognition (background, low p tracks) minimal distortion of particles/global performance

Requirements:

granularity @ reasonable speed staying within the power budget

Laser alignment:

the only "many-layer" silicon system in ILD

Towards a design:

engineering studies of FTD

More information on http://ific.uv.es/~vos/ilc

REFERENCES

- A. Savoy Navarro et al. (the SiLC collaboration), PRC review, DESY, 2008
- A. Savoy Navarro et al. (the SiLC collaboration), ILC tracking review, Beijing 2007
- The challenges of forward tracking, invited talk, IEEE NSS&MIC, Dresden, Germany, 2008
- Forward tracking, TILC08 (ACFA/EDG) Sendai, Japan, 2008
- The silicon tracker elements, ILD meeting, Sendai, Japan, 2008
- Forward Tracking, SiD meeting, Oxford, UK, 2008
- The silicon tracker, First ILD workshop, Desy Zeuthen, Germany, 2008
- Tracking and alignment at the ILC, *invited talk*, 2nd alignment workshop for the LHC, CERN, Ginebra, Switzerland, 2007
- Tracking at the ILC, invited talk, 8th International Conference on Large Scale Applications and Radiation Hardness of Semiconductor Detectors, published Nucl. Instr. Meth.,
- Overview of SiLC simulation, Linear Collider Workshop (LCWS07), *DESY (Germany)*, 2007, arXiv:0801.4509
- The SiLC simulation task force, ILC software workshop, Orsay, France, 2007
- The SiLC simulation task force, Tracking review, "the SiLC collaboration",, Beijing, China, 2007

Transverse momentum resolution versus polar angle Measured on three single-muon samples with fixed |p|

LiCToy on ILD00 (full KF fit), M. Valentan, HEPHY Vienna

FullLDCTracking on ILD00 (Mokka/MarlinReco) Vos/Duarte/Iglesias

Coverage

Concept	Magnetic Field	Angular 5-point	Coverage 3-point
SiD	5 T	12.5 (43 barrel)	9
LDC	4 T	26	19
GLD	3T	26 (6 points)	18 (4 barrel + 2 disk)
ILD	3.5 T	26 (6 points)	17

Coverage

Transverse impact parameter resolution versus polar angle Measured on three single-muon samples with fixed |p|

LiCToy on ILD00 (full KF fit), M. Valentan, HEPHY Vienna

FullLDCTracking on ILD00 (Mokka/MarlinReco) Vos/Duarte/Iglesias

Pattern recognition

Clearly, 6-15 degrees is weakest region in ILD in terms of number of measurements. And remember:

- non-negligible pair background
- First disks close to interaction point (jets!)
- Abundant low-momentum tracks (loopers)

Ongoing study (Carmen Iglesias) Evaluate hit densities in tt events per disk and per petal (subdividing disks in 8,20 or 16 single-wafer segments)

- Average #hits/disk falls by a factor 3 due to reduced angular coverage of outermost disks
- Average #hits/petal falls even faster (outermost disks divided in 16 segments)

It is important to evaluate the hit density locally (jets)

 A significant probability to receive several hits/petal remains even in the outermost disk

	#hits	/disk	#hits/petal	
disk	avg.	peak	avg.	peak
FTD1	9	37	1.1	12
FTD2	5	27	0.6	10
FTD3	8	36	0.4	10
FTD4	6	29	0.3	9
FTD5	5	25	0.3	10
FTD6	4	23	0.2	5
FTD7	3	28	0.2	4

Pattern recognition - tools

Combinatorial algorithm based on KF kit

The track finder of the ATLAS (arXiv:0707:3071) and CMS (NIM A 559 143) experiments

Run standalone FTD reconstruction implemented in MarlinReco processor on tt events with superposed pair background.

- Reference FTD (TESLA layout)
- 10 μm R-φ resolution
- 1.2 % X₀/disk (1-3) and 0.8 % X₀/disk (4-7).
- Several scenarios for R-resolution, from pixel to single-sided strip.

Extrapolation precision

Confusion

Pattern recognition

The combinatorial algorithm on stand-alone FTD is able to efficiently and cleanly reconstruct tracks down to a p_{T} of 100 MeV, provided:

R-segmentation: in innermost disks 500 μ m required, in outermost disks O (1cm)

Read-out speed: beyond several 10s of integrated bunch crossings the density of low momentum tracks prevents algorithm convergence

Material: an increase of the material beyond 1%/disk has dramatic consequences on pattern recognition

Environment: background level

Incoherent e⁺e⁻ pair produc off beamstrahlung photons produces a very large num of electrons and positrons each BX. The large majority soft and/or emitted at low angle and are trapped in the "accumulation zone"

Vertex-Forward Tracking

SiD (barrel+end-cap) and ILD (long barrel + FTD) have chosen very different layouts for the vertex detector and innermost forward tracking system

Establish strengths and weaknesses of different solutions by comparing the impact parameter resolution of toy geometries

CAVEAT: We're not comparing SiD and ILD (too many differences)

- Simplify the problem, reduce the number of observables
 - Vertexing is more than just flavour tagging.
 - Flavour tagging is more than just impact parameter resolution
- Simplify the problem, reduce the number of degrees of freedom.
 - Uncertainty in the material budget (services!)
 - Uncertainty in the envelope of the pair background (B-field, machine parameters)
- Simplify the problem, software limitations
 - conical beam pipe (with thicker conical sections) not yet implemented

Choosing a toy geometry

SiD: $L_{\text{barrel}} \sim 6.25 \text{ cm}, z_{\text{gap}} \sim 1 \text{ cm}$

ILD: $L_{\text{barrel}} \sim 12.5 \text{ cm}, z_{\text{gap}} \sim 10 \text{ cm}$

Tools - track fitting

CMS Kalman filter tool-kit.

The result of years of work by a lot of people. Validated in large-scale MC productions.

Extracted all relevant code in a series of libraries with limited external dependencies (CLHEP, ROOT).

Interfaced to toy geometries in standalone programme. Tested results for internal consistency and against existing fast-simulation packages.

Interfaced to MarlinReco (GEAR geometry, LCIO hits)

pull distribution R ϕ coordenate at last measurement plane

LCDTRK vs. KF: Transverse impact parameter resolution vs $p_{\scriptscriptstyle T}$

Transverse impact parameter resolution

Transverse impact parameter resolution vs. polar angle

Barrel-dominated part well-described by the standard formula.

Deviations in the very forward region (as expected)

Comparison of different layouts

Longer barrel
→ worse performance

But, let's repeat with material for barrel services

Central performance degraded due to larger radius

Barrel-endcap transition moved to smaller angle

Choosing a toy geometry

Add 3 % $\rm X_{\rm o}$ (on perpendicular crossing) of barrel VXD services Two routing options

Up! or along beam pipe?

The forward region clearly does NOT like the services routed along the beam pipe

If anything close to a few radiation lengths comes in the way between endcap and interaction point we can forget about forward vertexing

Comparison L

A longer barrel removes the "material bump" from the central region...

Of course, the material comes back - with a vengeance - at smaller angle

Save a little here....

Large distance, shallow angle

Comparison z_{gap}

Minimize the gap!

But: if we route the services along the beam pipe, the forward vertexing performance is terrible and essentially insensitive to z_{gap}

* In ILD the distance between VXD and innermost FTD is close to 10 cm. This clearance is motivated by the possibility to fit in a VXD cryostat. If a "cold" VXD technology is chosen, a short gap implies one has to install the innermost disks inside the cryostat.

Pattern recognition - tools

Combinatorial algorithm based on KF kit

The track finder of the ATLAS (arXiv:0707:3071) and CMS (NIM A 559 143) experiments

Run standalone FTD reconstruction implemented in MarlinReco processor on tt events with superposed pair background.

- Reference FTD (TESLA layout)
- 10 μm R-φ resolution
- 1.2 % X₀/disk (1-3) and 0.8 % X₀/disk (4-7).
- Several scenarios for R-resolution, from pixel to single-sided strip.

Extrapolation precision

Innermost disks

Confusion

