Ideas on a Tungsten HCAL Prototype

W. Klempt / CERN

Motivation
Goals and Objectives
Commercial available Tungsten Plates
Workshop in Annecy
Proposal for a W HCAL Prototype
Conclusion

CLIC09 Workshop 15/10/09

Motivation

 Physics at CLIC with a center of mass energy of 3 TeV requires to build a calorimeter system with rel. small energy leakage.

- => Design value for $λ_{int} ≥ 1$ (ECAL) + 7 (HCAL)
- Space available for barrel HCAL inside (reasonable sized) coil: Δr ≈ 1.40 m
 - => need to use a more dense material than Fe
- Why not use W as absorber material in HCAL??

Motivation

- No experience with W as absorber material in HCAL
- $\lambda_{int}(W) = 10 \text{ cm}$, $X_0(W) = 0.35 \text{ cm}$
- λ_{int} (Fe) / λ_{int} (W) = 1.7, X_0 (Fe) / X_0 (W) = 5
- For a W absorber:
 - less visible energy (ionization)
 - more neutrons (spallation)
- PFA analysis requires very fine granularity in both ECAL and HCAL
- For colorimeter design simulations need to be reliable and understood to a rather precise level.

Goals and Objectives for a W HCAL Prototype

- Validate and adjust simulations for HCAL performances
 - Linearity / energy
 - Resolution /energy
 - Shower structure in comparison to Fe
 - Time structure of signal (neutrons)
 - Compare scintillator with gaseous detectors
 - Experience with W plates

Later

- Other detector technologies
- Combine with ECAL proto

– ...

Mechanical Properties of Tungsten

	Pure W	INERMET 176*	Steel
% Tungsten	100	92.5	-
Alloying materials	-	Cu, Ni	-
Elasticity (Young) [GPa]	400	350	200
Density [g/cm ³]	19.3	17.6	7.85
% Elongation at yield	< 5**	5	30-50

^{*}Alloys used must be paramagnetic, **Tests required

Plate size and tolerances

Currently available plate sizes

Pure Tungsten

INERMET

1200 mm x 1600 mm 400 mm x 600 mm

- Thickness of 10 mm is feasible for both
- Flatness tolerance ca. 1.5 mm
 - < 1 mm possible</p>
- Thickness tolerance ± 0.5 mm
 - With machining ± 0.1 mm (cost ↑)

Mini Workshop in Annecy on 24/9/09

 The LCD-CERN, CALICE-DESY and LAPP groups agreed to work together and construct a W-HCAL prototype starting 2010.

- More collaborators should be found
- The aim is to have first test beam measurements in autumn 2010

Proposal for a W HCAL Prototype

- Start 2010 with a "small" prototype:
 - Start with ~20 W plates size 80x80 cm², 1 cm thick
 - Use as much as possible existing equipment from CALICE (detector planes, readout electronics, DAQ, mechanical infrastructure.....)
 - First test beam at PS/SPS in autumn 2010
 - Later increase depth to 40 or more layers

Detectors to be used

In 2010 start with existing CALICE scintillator cassettes

Overall size 90 x 90 cm² Central area equipped with small (3 x 3 cm²) cells

Equipped with readout and calibration

Future Detector Planes

 Micromegas detector planes with a cell size of 1x1cm² and digital read out

 Scintillator planes with a cell size of 3x3cm² over the whole surface and analog readout

Conclusion

- Tungsten offers maybe the possibility to build a compact HCAL with fine granularity readout at CLIC.
- No experience with W in an HCAL
 => need to validate W as absorber material in a prototype.
- Use of existing equipment from CALICE enables to get to first experimental result already by next year