

CLIC IP beam-based feedback

Javier Resta Lopez JAI, Oxford University

CLIC Workshop 2009 CERN, 12-16 October 2009

Contents

- Introduction: beam control stability issues
- IP-FB system for CLIC: analogue FB system scheme; latency issues; FONT project; CLIC interaction region; beam-beam deflection
- Luminosity performance simulations with IP-FB:
 - Luminosity performance in different scenarios of ground motion
 - Luminosity loss due to FD jitter: FD position jitter tolerance
- Summary and conclusions

Beam Control Stability Issues

- Degradation of the luminosity due to IP beam jitter
- Sources of IP beam jitter: ground motion, additional local noise (e.g. cooling water)
- IP jitter control:

"Cold-RF" based LC (e.g. ILC)

- A fast intra-train FB systems at the IP can in principle recover
 90% of the nominal luminosity
- The linac+BDS elements jitter tolerance and tolerable ground motion are not determined from IP jitter, but from diagnostic performance and emittance preservation

"Warm-RF" based LC (e.g. CLIC)

- IP beam stability mainly provided from:
 - Selection of a site with sufficiently small ground motion
 - Pulse-to-pulse FB systems for orbit correction in linac and BDS
 - Active stabilisation of the FD quadrupoles
- In this case a fast intra-train FB system is thought as an additional line of defence to recover at least ~ 80% of nominal luminosity in case of failure of the above stabilisation subsystems.
- A fast FB system can also help to relax the FD subnanometer position jitter tolerance

IP-FB Systems

ILC (500 GeV)

- Beam time structure:
 - Train repetition rate: 5 Hz
 - Bunch separation: 369.2 ns Train length: 969.15 µs
- Intra-train (allows bunch-tobunch correction)
- Digital FB processor (allows FPGA programming)
- Large capture range (10s of σ)
- IP position intra-train FB system + Angle intra-train FB system (in the FFŠ)

CLIC (3 TeV)

- Beam time structure:
 - Train repetition rate: 50 Hz
 - Bunch separation: 0.5 ns
 - Train length: 0.156 µs
- Intra-train (but not bunch-tobunch)
- Analogue FB processor
- No angle intra-train FB system due to latency constraints

Analogue FB system

Basic scheme

Equipment:

- BPM: to register the orbit of the out-coming beam
- BPM processor: to translate the raw BPM signals into a normalised position output
- Kicker driver amplifier: to provide the required output drive signals
- Fast kicker: to give the required correction to the opposite beam

CLIC IP-FB system latency issues

- Irreducible latency:
 - Time-of-flight from IP to BPM: t_{pf}
 - Time-of-flight from kicker to IP: t_{kf}
- Reducible latency:
 - BPM signal processing: t_p
 - Response time of the kicker: t_k
 - Transport time of the signal BPM-kicker: t_s

Study and test of an analogue FB system for 'warm' linear colliders: FONT3:

P. Burrows et al. "PERFORMANCE OF THE FONT3 FAST ANALOGUE INTRA-TRAIN BEAM-BASED FEEDBACK SYSTEM AT ATF", Proc. of PAC05.

Comparison of tentative latency times for a possible CLIC IP-FB system with the latency times of FONT3

Source of delay	Latency FONT3 [ns]	Latency CLIC [ns]
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	4	20
$t_{\scriptscriptstyle S}$	6	7
t_p	5	5
t_k	5	5
Total t_{FB}	20	37

FONT (Feedback On Nano-second Timescales)

Obvious differences on time-of-flight:

FONT3: BPM-kicker distance ≈ 1.2 m

 CLIC: Colliding beams; distance IP to BPM, distance kicker to IP ≈ 3 m

The FONT3 project succeeded in demonstrating feasible technology and operation of an intra-train FB for future "warm-RF" based LC. This technology can be applied to CLIC.

We could probably revisit the FONT3 technology to reduce the electronics latency < 10 ns (if we tried really hard!)

CLIC IR IP-FB BPM and kicker positions

The choice of the position of the IP-FB elements is a compromise between:

- Reduction of latency
- Avoiding possible degradation of the BPM response due to particle background/backsplash and possible damage of electronics components

If FONT elements 3 m apart from IP, then beam time-of-flight = 10 ns

Beam-beam deflection curve

The analysis of the beam deflection angle caused by one beam on the other is a method to infer the relative beam-beam position offset at the IP

Linear approximation in the range [-10, 10] σ_y^* : $\theta_{b-b}(\Delta y^*) = -18.02 \frac{\Delta y^*}{\sigma_v^*}$ [μrad]

The convergence range is limited by the non-linear response of beam-beam deflection

FB system simulation

Gain factor

Simple algorithm with a gain factor g:

$$\frac{\delta y}{\sigma_y^*} = g \cdot \frac{\theta}{\sigma_{y'}^*}$$

- where $\theta \approx y_{BPM}/d$ is the b-b deflection angle of the beam measured by the downstream BPM at a distance d=3 m from the IP.
- We consider a BPM resolution of about 1 μm.
- From the linear fit of the b-b deflection curve we can estimate a preliminary value (before optimisation) for this gain factor: $|g|/\sigma_{y'}^* = 1/18.02 = 0.055$
- The gain g from the simulations is related with the actual gain from the amplifier by:

$$g = C \frac{G}{\Delta G} \frac{\sigma_{y'}^{*}}{\sigma_{y}^{*}} d_{\mathrm{BPM}} d_{\mathrm{kicker}}$$
 where C calibration constant d_{BPM} distance IP – BPM d_{kicker} distance kicker - IP

Beam tracking simulations

Ground motion:

- In the following simulations we apply 0.2 s of GM (A. Seryi's models) to the CLIC BDS
- What is the RMS vertical beam-beam offset at the IP we have to deal with?
 - Simulation of 100 random seeds:

GM model	RMS ∆y* [nm]		
A (CERN)	0.1		
B (SLAC)	0.6		
C (DESY)	22.7		
K (KEK)	17.6		

- Macroparticle tracking through the BDS using the code PLACET
- Luminosity calculation using the code Guinea-Pig

Gain factor optimisation

Luminosity loss vs FB system gain factor in presence of GM

Notation: here we use a gain factor normalized to $\sigma^*_{y'}$ $(g \to g / \sigma^*_{y'})$

Gain factor optimisation

Summary

Gain factors limits in presence of different scenarios of GM

GM model	Luminosity loss	Range of gain factor
A	$\Delta L/L_0 < 1 \%$	0.0 < g < 0.4
В	$\Delta L/L_0 < 3\%$	0.1 < g < 0.4
C	$\Delta L/L_0 < 70 \%$	0.4 < g < 1.2
K	$\Delta L/L_0 < 65 \%$	0.4 < g < 1.2

Luminosity performance

Simulation time structure: Simulation applying a single random seed of GM C

•For the simulations we have considered a correction iteration every 30 ns. The systems performs approximately a correction every 60 bunches (5 iterations per train)

CLIC luminosity result with IP-FB

Different scenarios of ground motion

Luminosity distribution for simulation of 100 random seeds of the GM

Luminosity result with IP-FB

Different scenarios of ground motion

Remarks:

Considering the most severe scenarios of GM (models C & K), intratrain FB systems at the IP are not enough to achieve the nominal luminosity. Obviously it is due to remaining uncorrected pulse-to-pulse jitter, which in principle can be corrected using a downstream inter-train FB systems.

For a more complete simulation we should consider the action of inter-train FB systems + intra-train FB systems + additional luminosity tuning.

Luminosity result with IP-FB

Different scenarios of ground motion

- If we consider:
 - GM (1 random seed)
 - orbit correction in the BDS (SVD): using the available BPMs (resolution 100 nm) and dipole correctors in the BDS +
 - IP-FB

Luminosity result with IP-FB

Different scenarios of ground motion

- If we consider:
 - GM (100 random seed simulation) + orbit correction in the BDS (SVD) + IP-FB

Mean L recovery: 91.2%

Mean L recovery: 91.4%

Luminosity loss due to FD jitter

Analytic approximation:

The expected value of the square of the vertical offset of the beam at the IP due to the final quadrupole QD0 position jitter σ_{FD} :

$$\langle \Delta y^{*2} \rangle = \sigma_{\text{FD}}^2 K_{\text{FD}}^2 \beta_v^* \beta_{y \text{FD}}$$

The luminosity loss for small offsets can be approximate by:

$$\frac{\Delta L}{L_0} \approx \frac{1}{4} \frac{\Delta y^{*2}}{\sigma_y^{*2}} + \mathcal{O}(\Delta y^{*4})$$

Therefore, the average luminosity loss is given by:

$$\left\langle \frac{\Delta L}{L_0} \right\rangle \approx \frac{1}{4} \frac{\sigma_{\text{FD}}^2}{\sigma_y^{*2}} K_{\text{FD}}^2 \beta_y^* \beta_{y \text{FD}}$$

where σ_y^* (=0.9 nm) is the vertical IP core beam size, K_{FD} (=0.3176 m⁻¹) the integrated strength of QD0, β_y^* (=0.068 mm) the IP vertical betatron function, and β_{yFD} (=292274.6 m) the betatron function at QD0 position

FD position jitter tolerance

Luminosity loss vs FD vertical position jitter

Points: average over 100 tracking simulations using PLACET + Guinea-Pig

Error bars: standard deviation

Without IP-FB correction:
$$\left\langle \frac{\Delta L}{L_0} \right\rangle > 2\%$$
 for $\sigma_{\rm FD} > 0.1~{\rm nm}$

With IP-FB:
$$\left\langle \frac{\Delta L}{L_0} \right\rangle > 2\%$$
 for $\sigma_{\rm FD} > 0.5$ nm

Summary and conclusions

- The design of a beam-based intra-train IP-FB system for CLIC is in progress
- Reducible latency times (contribution from the electronics) of about 10 ns have been demonstrated by the FONT3 system at ATF using a FB analogue processor. In principle we can apply this technology to the CLIC IP-FB
- We have started the optimisation of the system: gain factor optimisation. Necessary further optimisation of the position in order to harmonize the design according to the mechanical details of the interaction region
- Preliminary results of luminosity performance with IP-FB in presence of ground motion:
 - (assuming nominal emittances at the exit of the linac) with pulse-to-pulse feedback correction in the BDS and intra-pulse IP-FB, total luminosity recovery > 90% of the nominal one even for the nosiest sites (models C & K)
- The IP-FB system can help to relax the FD jitter tolerance requirements:
 - − FD vertical position jitter tolerance (with IP-FB): $\sigma_{FD} \approx 0.5$ nm (< Δ L/L₀> $\approx 2\%$)
- We plan to contribute in detail to the engineering design of the CLIC IP-FB system

Appendix

Train structure

Cold I C Warm I C

	Cold LC	Walli	
Property	ILC 500 GeV	CLIC 3 TeV	units
Electrons/bunch	2.0	0.37	10^{10}
Bunches/train	2625	312	
Train Repetition Rate	5	50	Hz
Bunch Separation	369.2	0.5	ns
Train Length	969.15	0.156	μ s
Horizontal IP Beam Size (σ_x)	639	45	nm
Vertical IP Beam Size (σ_y)	5.7	0.9	nm
Longitudinal IP Beam Size	300	45	μ m
Luminosity	2.03	6.0	$10^{34} \text{cm}^{-2} \text{s}^{-1}$

For CLIC 738 times smaller bunch separation and 6212 times smaller bunch train length than for ILC!

IP intra-pulse FB is more challenging.

Appendix Kicker (IP-FB system for CLIC)

- In some cases the BPM IP-FB system has to deal with b-b deflection angles ~ 100 microrad.
- If we look at the b-b deflection curve, 100 microrad corresponds to Δy (at IP) $\approx 10 \, \sigma_y^* = 9 \, \text{nm}$ (considering $\sigma_y^* = 0.9 \, \text{nm}$ nominal vertical beam size at the IP).
- If kicker located 3 m upstream of the IP, the necessary kick angle for correction: $\Delta\theta = \Delta y$ [m]/3
- The kick angle of a stripline kicker can be defined as:

$$\Delta \theta = 2 g_{\perp} \frac{eV}{E} \frac{L}{a}$$

Appendix Kicker (IP-FB system for CLIC)

where "g" is the stripline coverage factor or geometry factor:

$$g_{\perp} = \tanh\left(\frac{\pi\omega}{2a}\right) \le 1$$
 (determined by the shape of the electrode). Generally $g_{\perp} \approx 1$

V: peak voltage

E: beam energy (1500 GeV)

R: impedance (\sim 50 Ω)

L: kicker length (without flanges or electrical effective length)

a kicker aperture (distance between electrodes)

Considering L=10 cm and from
$$\frac{\Delta y[m]}{3} = 2g_{\perp} \frac{eV}{E} \frac{L}{a}$$
 we obtain:

$$\frac{V}{a} = 22.5 \text{ kV/m}$$

Appendix Kicker (IP-FB system for CLIC)

 For the sake of simplicity, if we consider that the kick applied to the beam is exclusively a result of the magnetic field generated by the current flowing in the striplines, then we can write it in terms of the magnetic field B as follows:

$$\Delta \theta = \frac{2 e c B L}{E}$$

 And therefore, the transverse deviation at a distance l from the kicker to IP is given by

$$\Delta y = \frac{2ecBL}{E}l$$

 The delivered power is equal to the power dissipated on the two stripline terminations and is given by

$$P = 2 \frac{V^2}{2 Z}$$

Appendix Kicker Tentative parameters

Parameter	Value	
Length L	$10 \text{ cm} \ (\approx 15 \text{ cm with flanges})$	
Gap width d	15 mm	
Kicker impedance	50Ω	
Maximum votage	337 V	
Maximum magnetic field	$7.5 \times 10^{-5} \text{ T}$	
Delivered power	2.278 kW	

FD position jitter tolerance

Luminosity loss vs FD vertical position jitter

Points: average over 100 tracking simulations using PLACET + Guinea-Pig

Error bars: standard deviation

Without IP-FB correction:
$$\left\langle \frac{\Delta L}{L_0} \right\rangle > 10\%$$
 for $\sigma_{\rm FD} > 0.4$ nm

With IP-FB:
$$\left\langle \frac{\Delta L}{L_0} \right\rangle > 10\% \text{ for } \sigma_{\text{FD}} > 1 \text{ nm}$$