CALICE beam tests

in relation to Particle Flow and Geant4 validation

- Introduce CALICE its aims and objectives
- Outline test beam work
- Mainly discuss measurements of electromagnetic and hadronic showers
 - Lessons for detector design
 - Tests of GEANT4

CALICE

- CALICE ~300 people/53 groups/17 countries
- Various projects aimed towards aspects of highly segmented calorimetry for a future Linear Collider detector, motivated by Particle Flow.
- Given focus by common test beams, combining ECAL/HCAL/tail catcher (TCMT); common DAQ/analysis.
- First round small "physics prototypes"
 - Evaluate technologies; identify problem areas.
 - Validate Monte Carlo simulations, especially for hadronic showers, so that results can feed into full detector simulations.
 - ✤ Still sizeable systems with ~20K channels.
- Second phase "technological prototypes" (mainly under aegis of EUDET).
 - More realistic technological solutions; module dimensions etc.
 - e.g. minimise thickness of sensitive layers; power pulsing.
- Will discuss some results of physics prototypes today.

CLIC Workshop CERN Oct.'09

CALICE test beams

- Main beam tests, using π , μ , e beams:
- ***** 2006-7

✤ SiW ECAL + AHCAL + TCMT @ CERN

✤ 2007

Small DHCAL test @ Fermilab

2008

SiW ECAL + AHCAL + TCMT @ Fermilab

- 2009
 - Scint-W ECAL + AHCAL + TCMT @ Fermilab
 - Standalone RPC and Micromegas tests @ CERN
- 2010 planned
 - SiW ECAL + DHCAL + TCMT @ Fermilab

SiW ECAL

Good uniform response across ~6500 Si pads (calibrated using muons). Signal/noise ~7-8.

CLIC Workshop CERN Oct.'09

David Ward

UNIVERSITY OF

CAMBRIDGE

SiW ECAL results

CLIC Workshop CERN Oct.'09

SiW ECAL problem issues

CLIC Workshop CERN Oct.'09

Analogue HCAL

- Active layers: Scintillator tiles
 - high granularity in the layer center: 100 3x3 cm² tiles, then 6x6 cm² and 12 x12 cm²
 - light collection via wls fiber, read out with SiPM

- Steel absorber structure:
 - 38 layers
 - 2 cm total absorber thickness per layer (1.1 X₀, 0.12 λ)
 - + total ~ 4.5 λ

CAMBRIDGE

CLIC Workshop CERN Oct.'09

AHCAL electron data

- Understanding electron (and muon) response is an important prerequisite to studying hadron showers.
- Non-trivial need good control of corrections (e.g. temperature) and nonlinear response of SiPMs.
- Currently linearity OK to ~4% up to 50 GeV, and further improvements in the pipeline.
- Good enough to proceed to study hadrons

AHCAL hadronic showers

9

Comparisons with Geant4

(c) profile from shower start 10 GeV

(d) profile from shower start 80 GeV

CLIC Workshop CERN Oct.'09

AHCAL transverse shower profiles

CLIC Workshop CERN Oct.'09

Transverse profiles contd.

•Most G4 models predict too narrow showers (by ~10%), as judged from shower radius.

•One pre-release physics list (QGSC_CHIPS) looks much better.

•However, it doesn't actually get the shape right.

•Emphasises the need for great caution in drawing conclusions about MC models.

David Ward

UNIVERSITY OF

CAMBRIDGE

12

Hadrons in the SiW ECAL (MC only)

FTFP_BERT_TRV

QGSP BERT

QGSC_BERT

40

Depth

QGS_BIC

QGSC_QGSC

Hadron showers not contained in ECAL (~1λ_{int})
However, many showers start there.
Different target material

Different target material
High granularity;
High X₀/λ_{int}

• 8 GeV π^- : long. profile w.r.t. shower start

- c.f. 10 G4 physics lists
- sensitive to different particle components in initial interaction.

OF JE

Two-particle separation (AHCAL)

- Emulate particle flow.
- Superimpose two test beam pion events.
- Run Pflow clustering (not Pandora (yet))
- Pretend one was associated with charged track and other a neutral
- Calculate "efficiency"
 - Exactly two clusters
 - Neutral reconstructed correctly within ±3σ
- Show vs separation
- Scope for many similar studies in future.

Energy measurement -software compensation

- CALICE calorimeters are not compensating (e.g. e/π~1.2 in AHCAL).
- Can exploit fine granularity to correct in software.
- e.g. parametrise weights for hits of different energies (e/m showers tend to have greater particle density).
 Optimise on energy resolution.
- Improve resolution from $\sim 60\%/\sqrt{E}$ to $\sim 50\%/\sqrt{E}$
- Works equally well for HCAL alone or for combined ECAL/HCAL/TCMT system.
- No adverse effect on linearity of response. Actually improves it slightly.

Use of tail catcher

- CALICE test beam calorimeters:
 - ECAL $\sim 1\lambda$
 - AHCAL ~4.5λ
 - ♦ TCMT ~5λ
- Tail catcher is needed to contain hadronic showers
- ILD-like detector would have a coil of ~1.8λ behind the HCAL.
- Emulate its effect in software by omitting suitable layers of the CALICE setup.
- Study resolution as a function thickness of ECAL+HCAL, with and without use of TCMT.

CLIC Workshop CERN Oct.'09

Scint-W ECAL

David Ward

CLIC Workshop CERN Oct.'09

17

CAMBRIDGE

Digital HCAL

- Development and study of thin (glass) RPCs
- Development of a digital (1-bit) readout
- System for large number of channels
- Tests of a small (9-plane) prototype with cosmic rays, and in the FNAL testbeam
- Reasonable agreement between measurements and Monte Carlo simulations of the set-up
- Now moving rapidly towards a full 1 m³ prototype, for beam tests in 2010.

Summary

- Only touched on a few of the activities in CALICE
 - Also GEMs studied for DHCAL
 - Semi-Digital HCAL, based on RPCs, or MicroMegas
 - Digital ECAL (MAPS-based sensors)
- Understanding hadronic showers is a subtle business
 - Often dealing with novel sensor technologies need to understand calibration, special features etc.
 - Typically use muons and electron beams for this first before moving on to hadron data.
 - Many models in Geant4; all are hybrids. None can be expected to be perfect.
 - Still learning about the best ways to compare simulations wirh data.
 - Need measurements which are both experimentally robust and sensitive to models.
 - What are the most important observables for Particle Flow?
 - What are the most informative observables to provide useful feedback to G4 developers?

CLIC Workshop CERN Oct.'09

CLIC Workshop CERN Oct.'09

Imaging calorimeter

CLIC Workshop CERN Oct.'09

David Ward

21

Models used in Physics Lists (for π^{\pm})

- ✤ LHEP
 LEP (<55); HEP (>25)

- ✤ QGS_BIC BIC (<1.3); LEP (1.2-25); QGSB (>12)
- QGSC_BERT BERT (<9); QGSC (>6)
- ♦ QGSC_CHIPS QGSC_CHIPS (∀ energies) "energyflow i/f to CHIPS"
- - FTFP_BERTBERT (<5); FTFP (>4)
- ♦ FTFP_BERT_TRV BERT (<8); FTFP (>6)

٠.

- ✤ FTF_BIC BIC (<5); FTFB (>4)
- n.b. Ranges overlap to provide smooth transitions between models. Energies in GeV
- Prerelease lists in *italics*.

Other test beam activities

CLIC Workshop CERN Oct.'09

Long. Profiles vs radius

 $0 \, \mathrm{cm} \leq r < 6 \, \mathrm{cm}$ from shower start

 $12\,\mathrm{cm} \leq r < 18\,\mathrm{cm}$ from shower start

CLIC Workshop CERN Oct.'09

David Ward

UNIVERSITY OF CAMBRIDGE

And more models

 $0 \, \mathrm{cm} \leq r < 6 \, \mathrm{cm}$ from shower start

 $12 \,\mathrm{cm} \le r < 18 \,\mathrm{cm}$ from shower start

CLIC Workshop CERN Oct.'09

David Ward

1000

z [mm]

And more...

 $0 \, \mathrm{cm} \leq r < 6 \, \mathrm{cm}$ from shower start

 $12 \,\mathrm{cm} \le r < 18 \,\mathrm{cm}$ from shower start

CLIC Workshop CERN Oct.'09

