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Parallel Finite Element EM code suite ACE3P
SLAC has developed the conformal, higher-order, C++/MPI-based parallel EM code 
suite ACE3P for high-fidelity modeling of large, complex accelerator structures.

ACE3P: Parallel Finite Element EM Code Suite
(Advanced Computational Electromagnetics, 3D, Parallel)

ACE3P Modules – Accelerator Physics Application

Frequency Domain: Omega3P – Eigensolver (nonlinear, damping)

Funded by SciDAC1 (2001-2006) and continuing under SciDAC2 (in black)
Under development for ComPASS (2007-2011) (in blue)

Visualization: ParaView – Meshes, Fields and Particles

S3P – S-Parameter
Time Domain: T3P – Transients & Wakefields

Pic3P – EM Particle-In-Cell (self-consistent)
Particle Tracking:   Track3P – Dark Current and Multipacting

Gun3P – Space-Charge Beam Optics
Multi-Physics:         TEM3P – EM-Thermal-Mechanical



ACE3P Finite Element EM Time-Domain

N2

Curved tetrahedral finite 
elements with higher-order 
vector basis functions Ni:

Combine Ampere’s and Faraday’s laws ACE3P Finite Element Method:

T3P and Pic3P: full-wave EM 

N1

For order p=2:   20 different Ni’s
For order p=6: 216 different Ni’s

Solve linear system at every time step:

Ax=b

Unconditionally stable time integration*

T3P and Pic3P: full-wave EM 
from first principles

*Navsariwala & Gedney, An unconditionally stable parallel finite 
element time domain algorithm, Antennas and Propagation, 1996



Previous work: PETS wakefield damping…

Dissipation of dipole wakefields in 
dielectric loads, εεεε=24, tanδδδδ=0.32



… PETS wakefield convergence …

p: Finite Element vector basis order

Higher-order results with p≥≥≥≥2 reach 
convergence; p=1 result differs



… Benchmarking: T3P vs. GdfidL …

T3P (p=2)
GdfidL (Finite Difference)

GdfidL results show similar 
differences as p=1 T3P results

Slightly simplified geometry - GdfidL results by I. Syratchev



PETS

… and Simulation of RF power transfer

Low group velocity 
requires simulations PETS

T3P models realistic, complex 
accelerator structures with 
unprecedented accuracy

requires simulations 
with 100k time steps

p=1: 15k CPU hours 
p=2: 150k CPU hours
p=3: 1.5M CPU hours
…



Now… PETS power extraction study

Unstructured conformal 
(curved) mesh model of a 
quarter structure, 0.5 mm 
mesh size on iris:

3.7M tetrahedral elements

34 cells, 2 matching 
cells, outer tank, 
dielectric absorbers

solid model courtesy CERN



T3P - Single drive bunch in PETS

t = 20 ns 
(renormalized scale)

Electric field at t = 1 ns

Emax at PETS output port σz=2 mm  



T3P – HOMs in PETS (single drive bunch)  

HOMs might lead to coupling between PETS, 
requires further study.

Electric field at t = 5 ns



PETS single cell RF frequency calculation

To model multiple drive bunches, need to know proper 
bunch spacing, given by RF frequency.

Using the same mesh 
model as for T3P time-
domain calculations, 
obtain RF frequency with 
Omega3P:

f=11.9822(2) GHz

100k elements, p=2



T3P - Multiple drive bunches in PETS

Electric field at t = 5 ns

T3P simulation 
using one bunch 
per RF bucket:

Electric field at t = 5 ns

Emax at PETS output port σz=2 mm  



Multi-bunch simulation vs. stacking

Excellent agreement



RF pulse formation
50 degrees

50 bunches

Phase modulation:
Ramping of drive bunch 
injection phase offsets, e.g.:



Simulation parameters and assumptions:
• Ellipsoidal copper tip, half-axes 10µ x 1µ x 1µ (β=50)
• Surface fields obtained from eigenmode calculation
• Emission from tip surface, depends on local field   
strength (RF + space charge)

Pic3P: Dark current field emitter modeling

Aim: Use PIC code Pic3P to self-consistently model field emission process
to help understand dark current emission and heating.

Fowler-Nordheim predicts emission of Q=0.67 pC from such a 

3) Calculate EM space-charge fields

1) Push (macro-)particles

2) Deposit charges

4) Emit particles using Fowler-Nordheim field 
emission in RF and space charge fields

Enhanced surface RF fields 
calculated with Omega3P

Fowler-Nordheim predicts emission of Q=0.67 pC from such a 
tip during one RF cycle, without space-charge effects. A PIC 
simulation is used to estimate the actually emitted charge.



Pic3P: Self-consistent field emission 

Pic3P simulation of field emission, including space-charge effects.
Parameters indicated on previous slide.
Particles colored by momentum, only space-charge fields shown.



Pic3P: Space-charge effect in field emission

zero charge limit self-consistent space charge fields

For the simulated 10-degree window around the RF peak, Fowler-Nordheim 
without space-charge predicts Q=0.14 pC, but PIC simulation shows only 
Q=0.06 pC emitted charge.

Observed space-charge limitation of emission by a factor of ~ 2.
Estimated emitted average current for full RF cycle from this tip: ~ 5 mA

work in progress



Summary and Outlook

• SLAC’s Advanced Computations Department has developed the 
parallel Finite Element ACE3P code suite for high-fidelity 
electromagnetic modeling of complex accelerator structures, using 
conformal unstructured meshes and higher-order field representation.

• T3P was applied to model the RF power generation in the PETS.

• Pic3P was applied to model self-consistent dark current field emission.

Future work may include (we welcome suggestions!):

Ø Pulse formation and dispersive effects in accelerating structure

Ø Wakefield damping in accelerating structure

Ø Coupling between PETS and accelerating structure

Ø Calculation of trapped modes between PETS

Ø Further dark current field emission and heating studies
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