Detectors for a Multi-TeV Collider: "what can be learnt from the ILC"

Mark Thomson University of Cambridge

- **★** Over last 10 years extensive studies of detector concepts for the ILC
 - Recently culminated in ILC detector Letters of Intent
 - Two validated detector concepts: ILD, SiD
- ★ Initial CLIC detector studies build on these concepts...
- ★ Starting point for CLIC CDR detector

<u>This Talk</u>

- **★** Discuss motivation for ILC detector concepts
- ★ Give very brief overview of ILD and SiD
- ★ Discuss requirements for a detector at CLIC
 - Physics
 - Machine
- ★ Discuss main issues for CLIC
 - Backgrounds
 - Vertex detector/flavour ID
 - Tracking
 - Calorimetry
 - Bunch Crossing (BX) tagging

With reference to ILC detector concept studies

ILC Physics

- **★** Detector design should be motivated by physics
- Full physics programme not fully defined until results from LHC
- ***** Nevertheless, some clear candidates:
 - e.g. Precision Studies/Measurements
 - Higgs sector
 - SUSY particle spectrum (if there)
 - Top physics
- Minimum detector requirements matched to "mandatory" physics programme

★ Radiation hardness not a significant problem, e.g. 1st layer of vertex detector : 10⁹ n cm⁻² yr⁻¹ c.f. 10¹⁴ n cm⁻² yr⁻¹ at LHC

Bottom Line:

Want to design a general purpose detector to fully exploit physics in clean ILC environment

ILC Detector Requirements

ilc

ILC Detector Concepts

ILD: International Large Detector

- "Large" : tracker radius 1.8m
- B-field : 3.5 T
- Tracker : TPC

Calorimetry : high granularity particle flow ECAL + HCAL inside large solenoid

SiD: Silicon Detector

"Small" : tracker radius 1.2m B-field : 5 T Tracker : Silicon Calorimetry : high granularity particle flow ECAL + HCAL inside large solenoid

★ Both concepts "validated" by IDAG (independent expert review)

- Detailed GEANT4 studies show ILD/SiD meet ILC detector goals
- ★ Fairly conventional technology although many technical challenges

Represent plausible/performant designs for an ILC detector

From ILC to CLIC Detector Concepts

- **★** Detector design should be motivated by physics
- **\star** On assumption that CLIC would be staged: e.g. 500 GeV \rightarrow 3 TeV
 - Must meet all ILC detector goals
 - Hence ILD and SiD represent good starting points
- **★** For **3** TeV operation what are the detector goals ?
 - Less clear than for the ILC (for ILC Higgs physics helps define goals)
 - Nevertheless can make some statements:
 - Still want to separate W/Z hadronic decays

Jet energy res:

$$\frac{\sigma_E}{E} < 3 - 4\%$$

 Heavy flavour-tagging still will be important; higher boost of b/c-hadrons will help. ILC goal likely(?) to be sufficient, i.e.

$$\sigma_{r\phi} = 5 \oplus 10/(p \sin^{\frac{3}{2}} \theta) \mu m$$
 but, needs study

 Requirements for momentum resolution less clear, high p_T muons likely to be important...

But...

Main detector requirements driven by CLIC machine environment

From ILC to CLIC Detector Concepts

	LEP 2	ILC 0.5 TeV	CLIC 0.5 TeV	CLIC 3 TeV
L [cm ⁻² s ⁻¹]	5×10 ³¹	2×10 ³⁴	2×10 ³⁴	6×10 ³⁴
BX/train	4	2670	350	312
BX sep	247 ns	369 ns	0.5 ns	0.5 ns
Rep. rate	50 kHz	5 Hz	50 Hz	50 Hz
L/BX [cm ⁻²]	2.5×10 ²⁶	1.5×10 ³⁰	1.1×10 ³⁰	3.8×10 ³⁰
γγ→X / BX	neg.	0.2	0.2	3.0
σ_x / σ_v	240 / 4 mm	600 / 6 nm	200 / 2 nm	40 / 1 nm

Note: Integrated luminosity per BX ~ same for ILC and CLIC

- **★** Beam related background:
 - Small beam profile at IP leads very high E-field;
 - Beamsstrahlung
 - Pair-background
 - Effects more significant at CLIC
- ***** Bunch train structure:
 - ILC: BX separation 369 ns
 - CLIC: BX separation 0.5 ns
- ★ Two photon → hadrons background, at CLIC:
 - Approx three "visible" events per BX
 - Important since, sub-detectors will integrate over >1 BX (0.5 ns)

Beamstrahlung

many

e⁺e⁻ Pairs

nnn

Sub-detectors: from ILC to CLIC

ILC Vertex detector

★ILD and SiD assume Silicon pixel based vertex detectors (5 or 6 layers)

Main design considerations:

- Inner radius: as close to beam pipe as possible for impact parameter resolution ~ 15 mm
- ★ Layer thickness: as thin as possible to minimize multiple scattering

$$\sigma_{r\phi} = 5 \oplus 10/(p\sin^{\frac{3}{2}}\theta)\,\mu\mathrm{m}$$

Constraints:

- Inner radius limited by pair background depends on machine + detector B-field
- ★ Layer thickness depends on technology
- **★** Time-stamping:
 - ILD assume integrate over ~50 μs
 - SiD assume single BX time-stamping (0.3 μs)
 - how feasible
 - faster readout, implies power consumption, cooling ⇒ more material

Impact of pair background at CLIC

CLIC Vertex Detector

- ★ Pair background is worse at CLIC
- Previously studied using full simulation at 3 TeV using ILD-like detector

Conclusions depend on assumptions for detector integration times:

- used 100 BX for ILC
- full bunch train for CLIC

CLIC VTX: O(10) × more background CLIC TPC: O(30) × more background

- **★** For reasonable occupancy:
 - Inner radius of CLIC VTX detector

31 mm

 Still obtain good impact parameter resolution (depends on assumed point resolution)

Pair background constrained by B-field, so does this argue for a higher B-field ?

Adrian Vogel

B-field and ILC Vertex detector

- ★ This question has been addressed by ILD study
- **\star** But radius of pair background envelope scales roughly as \sqrt{B}

★ Compare flavour tagging performance for different detector models

• Differences of 2.5 mm in inner radius of beam pipe due to B field

★ <u>Conclude:</u>

- Differences are not large
- Smaller inner radius of vertex detector not a strong effect
- Earlier studies showed that going from 15 mm → 25 mm inner radius did not have a large impact on flavour tag

31 mm probably OK

Note: Vertex charge measurements more sensitive to r_{INNER}

Two options:

ILD: Time Projection Chamber

• Large number of samples

SiD: Silicon tracker (5 layers)

- Few very well measured points
- **★** Lol studies show that both result in :
 - Very high track reconstruction efficiency
 - Excellent momentum resolution: $\sigma_{1/p_{\rm T}} \sim 2 \times 10^{-5} \, {
 m GeV^{-1}}$ (high p tracks)

What is the best option for CLIC ?

- Robustness to background/Pattern recognition ?
- Two track separation ?

- **★** For TPC, conservatively take drift velocity to be 4 cm μ s⁻¹
- Therefore fill TPC with 150 BXs of background shifted in z
- Superimpose on fully-hadronic top-pair events at 500 GeV
- ★ Main issue "micro-curlers", low energy e⁺e⁻ from photon conversions
- **★** Removed using dedicated patrec software

★ Effective removal of large fraction of background hits

	Top (p _T >1 GeV)	Background
Raw hits	~8,600	~265,000
After	~8,500	~3,000

★ By eye – clear that this should be no problem for PatRec

★ In practice, negligible impact on track reconstruction efficiency.

★ At this stage it is not clear which is the best option for CLIC

TPC:

- ✓ Excellent pattern recognition capabilities in dense track environment
- Integrates over all bunch-train: 312 BXs ~ 1cm drift

Silicon:

- ✓ May provide some time stamping capability
- Pattern recognition in dense CLIC track environment not proven (SiD studies assumed single BX tagging)

Silicon Tracker is probably the safest option for now – but a TPC is certainly not ruled out

Needs a detailed study with full CLIC background/BX structure

Calorimetry at the ILC

★ ILD and SiD concepts <u>designed for</u> particle flow calorimetry, e.g. ILD* <u>ECAL:</u>

- SiW sampling calorimeter
- Tungsten: $X_0 / \lambda_{had} = 1/25$, $R_{Mol.} \sim 9mm$
 - → Narrow EM showers
 - → longitudinal sep. of EM/had. showers
- Iongitudinal segmentation: 30 layers
- transverse segmentation: 5x5 mm² pixels

HCAL:

- Steel-Scintillator sampling calorimeter
- Iongitudinal segmentation: 48 layers (6 interaction lengths)
- transverse segmentation: 3x3 cm² scintillator tiles

Comments:

- ***** Technologically feasible (although not cheap)
- Ongoing test beam studies (CALICE collaboration)

*Other ILD calorimetry options being actively studied, e.g. RPC DHCAL, Scintillator strip ECAL

Particle Flow Calorimetry

- ★ In a typical jet :
 - 60 % of jet energy in charged hadrons
 - + 30 % in photons (mainly from $\pi^0 o \gamma\gamma$)
 - + 10 % in neutral hadrons (mainly $n \mbox{ and } K_L$)
- Traditional calorimetric approach:
 - Measure all components of jet energy in ECAL/HCAL !
 - ~70 % of energy measured in HCAL: $\sigma_{\rm E}/{\rm E} \approx 60\,\%/\sqrt{{\rm E}({\rm GeV})}$
 - Intrinsically "poor" HCAL resolution limits jet energy resolution

- **★** Particle Flow Calorimetry paradigm:
 - charged particles measured in tracker (essentially perfectly)
 - Photons in ECAL: $\sigma_{\rm E}/{\rm E} < 20\,\%/\sqrt{{\rm E}({\rm GeV})}$
 - Neutral hadrons (ONLY) in HCAL
 - Only 10 % of jet energy from HCAL => much improved resolution

Particle Flow Algorithms

Reconstruction of a Particle Flow Calorimeter:

- ***** Avoid double counting of energy from same particle
- ***** Separate energy deposits from different particles
- Performance depends on hardware + reconstruction software (Particle Flow Algortithm)

Level of mistakes, "confusion", determines jet energy resolution <u>not</u> the intrinsic calorimetric performance of ECAL/HCAL

Principle of Particle Flow Calorimetry now demonstrated; it can deliver at ILC energies

E	σ _E /Ε (rms ₉₀)	
F JET	ILD	SiD
45 GeV	3.7 %	5.5 %
100 GeV	2.9 %	4.1 %
180 GeV	3.0 %	4.1 %
250 GeV	3.1 %	4.8 %

- ILD/PandoraPFA meets ILC goal for all relevant jet energies
- SiD/IowaPFA getting close: difference = smaller detector + software

PFA at CLIC ?

★ At a Multi-TeV collider, leakage of hadronic showers is a major issue **★** HCAL in ILD (6 λ_{I}) and SiD (4 λ_{I}) concepts too thin to contain 1 TeV showers

- **★** Probably need $\sim 8 \lambda_{I}$ HCAL for CLIC energies
 - but needs to be inside Solenoid for PFA cost/feasibility
 - e.g. for current ILD concept ⇒ 7.4m diameter solenoid !
 - compact structures e.g. Replace steel with Tungsten as HCAL absorber?
 - partially instrumented solenoid ?

In principle, can PFA deliver at CLIC energies ?

On-shell W/Z decay topology depends on energy:

★ Is an ILD-sized detector suitable for CLIC ?

★ Defined modified ILD⁺ model:

- B = 4.0 T (ILD = 3.5 T)
- HCAL = 8 λ_I (ILD = 6 λ_I)
- ★ Jet energy resolution

E _{JET}	σ _E /E = α/√E _{jj} cosθ <0.7	σ _Ε /Ε _j
45 GeV	25.2 %	3.7 %
100 GeV	28.7 %	2.9 %
180 GeV	37.5 %	2.8 %
250 GeV	44.7 %	2.8 %
375 GeV	71.7 %	3.2 %
500 GeV	78.0 %	3.5 %

★ Meet "LC jet energy resolution goal [~3.5%]" for 500 GeV ! jets

W/Z Separation

Current PandoraPFA/ILD⁺ gives good W/Z separation for 0.5 TeV bosons
 Less clear for 1 TeV bosons – but PFA not optimized for CLIC energies

★ (Perhaps surprisingly) PFlow calorimetry looks promising for CLIC

FFA Detector Design Issues

★ Assuming a high granularity PFlow detector for CLIC, there are some important design considerations e.g. B-field, ECAL inner radius

• Confusion $\propto B^{-0.3} R^{-1}$ (1/R dependence "feels right", geometrical factor !)

Detector should be fairly large Very high B-field is less important

Conclusions:

--ilc

The Alternative to PFlow

- Dual/Triple readout calorimetry
- ★ Measure all components of hadronic shower
 - Measure EM component:
 - **Cerenkov light**
 - Measure "slower" hadronic component: scintillation signal
 - Measure thermal neutron component: from timing (triple readout)
 - ★ Effectively, measure shower fluctuations
 - ★ In principle, can give very good resolution-

Possible implementation:

- **★** Totally active crystal calorimeter (ECAL + HCAL)
 - ECAL: ~100,000 5×5×5 cm³ crystals, e.g. BGO
 - HCAL: ~50,000 10×10×10 cm³ crystals
 - Readout: 500,000 Si photo-detectors
- ★ GEANT4 simulations: 22%/√E
- ★ It could be the "ultimate" calorimeter, but...
 - Feasible ? Cost ?
 - Scintillation signal slow (c.f 0.5 ns)
 - Needs significant R&D programme

The Importance of BX tagging

Two-photon → hadrons background

- ***** Results need checking (preliminary)
- **★** With 0.5 ns BX will inevitably integrate over multiple BXs, how many?
- **★** CLIC at 3 TeV may look rather different to the ILC environment
- **★** In addition, there is also the pair background...

- Reconstruction study with ILD (conservative assumptions) shows that at the ILC BX-tagging is not likely to be a significant issue
- At CLIC, physics performance likely to depend strongly on BX-tagging capability.
- First studies (Battaglia, Blaising, Quevillon): suggest ~25 ns or better
- This is challenging... and places constraints on detector technologies

This is an important issue which need careful study

Summary/Conclusions

★ ILC detector concepts are now well studied

meet the ILC goals

★ ILC concepts useful starting point for a possible CLIC detector

particle flow calorimetry looks promising

★ Argument for very high B-field not that compelling

4 T probably sufficient – needs proper study

★ CLIC machine environment is much more challenging

backgrounds (pairs/γγ→hadrons)
time structure – inevitably integrate over multiple BXs

 Detailed simulation studies of background/impact on physics are essential

- ★ Need to understand the physics environment at CLIC
 - detector requirements may be very different from ILC

Backup Slides

- IF one assumes single BX tagging capability then background is not an issue
- ★ For ILD studies conservatively? assume 30 µs / 125 µs integration times for VTX layers (0,1) and (2,3,4,5) respectively
- Therefore VTX integrates over 83/333 BXs
- ★ Superimpose on fully-hadronic top-pair events at 500 GeV

- Also consider finite cluster size of background hits (~10 pixels)
 Significantly increases occupancy
- ★ Significantly increases occupancy

	layer	Occ.
	0	3.3 %
-	1	1.9 %
	2	0.4 %
	3	0.3 %
	4	0.08 %
	5	0.06 %

- **★** Combinatorics produce fake "ghost" tracks
- ★ In addition to some real electron/positron background tracks
- ***** Large combinatoric background challenges pattern recognition
- ★ From 83/333 BXs overlayed on $e^+e^- \rightarrow t\bar{t} \rightarrow 6$ jets : reconstruct ~34 "ghost" tracks/event (~1/3 are genuine)
- ★ Rejected by requiring at least 1 SIT hit or >10 TPC associated hits

Left with ~0.5 GeV per event (mixture of real tracks/combinatorics)