

Wakefield Suppression for CLIC – A Manifold Damped and Detuned Structure

<u>Roger M. Jones</u> Cockcroft Institute and The University of Manchester

Wake Function Suppression for **CLIC**-Staff

- **Roger M. Jones (Univ. of Manchester faculty)** >Alessandro D'Elia (Dec 2008, Univ. of Manchester PDRA based at **CERN**)
- > Vasim Khan (Ph.D. student, Sept 2007)
- >Part of EuCard (European Coordination for Accelerator **Research and Development) FP7 NCLinac Task 9.2**

V. Khan, CI/Univ. of Manchester Ph.D. student pictured at EPAC 08

A. D'Elia, CI/Univ. of **Manchester PDRA based** at CERN (former CERN Fellow). **Collaborators: W. Wuensch, A. Grudiev (CERN)**

CLIC09 Workshop, October 12th - 15th, 2009, CERN

CHESTER 1824

Overview

Three Main Parts:

- 1. Introduction/features of manifold damped and detuned linacs.
- 2. Initial design indicating required bandwidth and necessary sigma of Gaussian
- 3. Design tied to CLIC_G –interleaving, zero-crossing
- 4. Design with relaxed parameters –modified bunch spacing, bunch population etc. Based on moderate damping on strong detuning. Single-structure based on the eight-fold interleaved for HP testing.
 - 5. Concluding remarks

1. Introduction – Present CLIC baseline vs. alternate DDS design

The present CLIC structure relies on linear tapering of cell parameters and heavy damping with a Q of ~10.
 Wake function suppression entails heavy damping through waveguides and dielectric damping materials in relatively close proximity to accelerating cells.

- Alternative scheme, parallels the DDS, developed for the NLC/GLC entails:
- 1. Detuning the dipole bands by forcing the cell parameters to have a precise spread in the frequencies –presently Gaussian Kdn/df- and interleaving the frequencies of adjacent structures.
- 2. Moderate damping Q~500

1. Features of CLIC DDS Accelerating Structure

MANCHESTER

- SLAC/KEK RDDS structure illustrates the essential features of the conceptual design
- Each of the cells is tapered –iris reduces with an erf-like distribution
- HOM manifold running alongside main structure removes dipole radiation and damp at remote location (4 in total)
- Each of the HOM manifolds can be instrumented to allow:
 1) Beam Position Monitoring
 2) Cell alignments to be inferred

1. CLIC Design Constraints

t**S**

MANCHESTER

The University of Manchester

1) RF breakdown constraint

- $E_{sur}^{\max} < 260 MV / m$
- 2) Pulsed surface temperature heating $\Delta T^{\max} < 56K$
- 3) Cost factor

 $P_{in} \sqrt[3]{\tau_p} / C_{in} < 18 MW \sqrt[3]{ns} / mm$

Beam dynamics constraints

 For a given structure, no. of particles per bunch N is decided by the <a>/λ and Δa/<a>
 Maximum allowed wake on the first trailing bunch

 $W_{t1} \le \frac{6.667 \times 4 \times 10^9}{N} (V / [pC.mm.m])$

Wake experienced by successive bunches must also be below this criterion

Ref: Grudiev and Wuensch, Design of an x-band accelerating structure for the CLIC main linacs, LINAC08

1. Baseline CLIC_G Design

Structure	CLIC_G
Frequency (GHz)	12
Avg. Iris radius/wavelength <a>/λ	0.11
Input / Output iris radii (mm)	3.15, 2.35
Input / Output iris thickness (mm)	1.67, 1.0
Group velocity (% c)	1.66, 0.83
No. of cells per cavity	24
Bunch separation (rf cycles)	6
No. of bunches in a train	312

Lowest dipole band: ∆f ~ 1GHz Q~ 10

Truncated Gaussian : $W_{t} = 2\vec{\mathbf{K}}e^{-2(\sigma\pi t)^{2}} |\chi(t,\Delta f)|$ where : $\chi(t,\Delta f) = \frac{\operatorname{Re}\left\{\operatorname{erf}\left(\left[n_{\sigma} - 4i\pi\sigma t\right]/2\sqrt{2}\right)\right\}}{\operatorname{erf}\left(n_{\sigma}/2\sqrt{2}\right)}$ CLIC_DDS Uncoupled Design

2. Initial design for CLIC DDS

Cockcroft Institute

MANCHESTER

2. Initial design for CLIC DDS

First dipole Uncoupled, coupled. Dashed curves: second dipole

ockcroft Institute

S-fold interleaving employed
Finite no of modes leads to a recoherance at ~ 85 ns.
For a moderate damping Q imposed of ~1000, amplitude of wake is still below 1V/pc/mm/m

3.3 GHz structure does satisfy the beam dynamics constraints
However, it fails to satisfy RF breakdown constraints.

CLIC09 Workshop, October 12th - 15th, 2009, CERN

MANCHESTER

3. Gaussian distribution linked to CLIC_G parameters

Cell	a (mm)	b (mm)	t (mm)	Vg/c (%)	f1 (GHz)
1	3.15	9.9	1.67	1.63	17.45
7	2.97	9.86	1.5	1.42	17.64
13	2.75	9.79	1.34	1.2	17.89
19	2.54	9.75	1.18	1.0	18.1
24	2.35	9.71	1.0	0.86	18.27

Uncoupled parameters: $\langle a \rangle / \lambda = 0.11$ $\Delta f = 3\sigma \sim 0.82 \text{ GHz}$ $\Delta f / \langle f \rangle = 4.5 \%$

CLIC_DDS Uncoupled Design tied to CLIC_G Parameters

CLIC09 Workshop, October 12th - 15th, 2009, CERN

MANCHESTER

4. Relaxed parameters fied to surface field constraints

Uncoupled parameters

•

Cell 1

- Iris radius = 4.0 mm
- Iris thickness = 4.0 mm, •
- ellipticity = 1
- Q = 4771
- $R'/Q = 11,640 \ \Omega/m$
- vg/c = 2.13 % c

Cell 24

- Iris radius = 2.13 mm
- Iris thickness = 0.7 mm,
- ellipticity = 2
- Q = 6355
- $R'/Q = 20,090 \Omega/m$
- vg/c = 0.9 %c CLIC09 Workshop, October 12th - 15th, 2009, CERN

Three cells in the chain are illustrated. TM modes couple to the beam . Both TM and TE modes and excited and the coupling to the manifold is via TE modes. The manifold is modeled as a transmission line periodically loaded with L-C elements.

Cct Model Including Manifold-Coupling

MANCHESTER

4. RF Efficiency: CLIC_G vs CLIC_DDS

CLIC_G structure (~0.8 GHz):

- > $<a>/\lambda=0.11$, from beam dynamics constraints $~3.72 \times 10^9$ particles per bunch
- > Heavy damping allows an inter bunch spacing ~ 0.5 ns.
- > This leads to about 1 A beam current and rf –to-beam efficiency of ~28%.

CLIC_DDS structure (~2.3 GHz):

- > <a>/ λ =0.126, and 4.5x10⁹ particles
- > Moderate Q~500 imposed an inter bunch spacing of 8 cycles (~ 0.67 ns).

Bunch spacing is increased in CLIC_DDS

Beam current is compensated for by increasing the bunch population (subject to beam dynamics constraints) and hence the rf-to-beam efficiency of the structure is not affected significantly.
CLIC09 Workshop, October 12th - 15th, 2009, CERN

HESTER 1824

4. RF Summary

Parameters	CLIC_G (Optimised) [1,2]	CLIC_DDS (Sparse sampled, Single structure)	CLIC_DDS (8-fold interleaved)
Bunch space (rf cycles/ns)	6/0.5	8/0.67	8/0.67
Limit on wake (V/pC/mm/m)	7.1	5.6	5.3*
Number of bunches	312	312	312
Bunch population (10 ⁹)	3.72	4.7	5.0*
Pulse length (ns)	240.8	273	272.2*
Fill time (ns)	62.9	42	40.8*
Pin (MW)	63.8	72	75.8*
Esur max. (MV/m)	245	232	236
Pulse temperature rise (K)	53	47.3	51
RF-beam-eff.	27.7	26.6	26.7*
Figure of merit (a.u.)	9.1	8.41	8.29*

[1] A. Grudiev, CLIC-ACE, JAN 08
[2] H. Braun, CLIC Note 764, 2008
* Mean value of 8 structures

CLIC09 Workshop, October 12th - 15th, 2009, CERN

HESTER 1824

4. Relaxed parameters tied to surface field constraints

 Full circuit model employed with manifold parameterisation achieved with HFSS v11 simulations
 7 fiducial cells chosen out of 24 cells and subsequently for 192 cells

h

a+a1

r_C

CLIC09 Workshop, October 12th - 15th, 2009, CERN

a2

a1

MANCHESTER

4. Surface Fields, ΔT **and RF Efficiency**

CLIC09 Workshop, October 12th - 15th, 2009, CERN

HESTER 1824

4. Relaxed parameters –full cct model

Dispersion curves for select cells are displayed (red used in fits, black reflects accuracy of model)

>Provided the fits to the lower dipole are accurate, the wake function will be wellrepresented

>Spacing of avoided crossing (inset) provides an indication of the degree of coupling (damping Q)

CLIC09 Workshop, October 12th -

4. Relaxed parameters (RP)–Spectral fn.

Single non-interleaved structure

Potential Structure for CFT3 Module

8-fold interleaved structure

Eight structures in each CTF3 module

4. Relaxed parameters (RP)–Wakefunction

22

4. Relaxed parameters (RP)– Decoupling 2 End Cells

CLIC09 Workshop, October 12th - 15th, 2009, CERN

4. Concluding remarks

>The last two designs (ZC and RP) both meet both the beam dynamics and the breakdown constraints

> The design closely tied to the CLIC_G design requires the bunches to be located on the avoided crossing in the wake. Requires beam dynamics simulations to validate this.

➤ The modified design with relaxed parameters meets both constraints and in particular with full interleaving, experience with NLC/GLC structures leads us to conclude it will lead to relaxed manufacturing tolerances.

➤ The sparse sampled structure will enable the high power rf properties to be tested –includes max and min values of distribution. This will be a representative single-structure test of the features of the complete 8-fold interleaved structure! CLICOP Workshop, October 12th - 15th, 2009, CERN

STER 124

4. Concluding remarks

→ Beam dynamics simulations needed to investigate the required tolerances. Preliminary steps, S_{RMS} calculations, in progress (Alessandro + Vasim). Initial simulations have also been conducted on sensitivity of end-cell couplings.

>HOM/Fundamental coupler designs need investigation (Alessandro)

≻Additional optimisation also in progress on improving the Q by changing the flat-top cavity to a curved geometry –expect ~10% improvement.

Some additional optimisation of cavity slots may be possible.

➢ These new designs should be verified with experimental testing of wake function (revive ASSET!) CLIC09 Workshop, October 12th - 15th, 2009, CERN STER

5. Extra Slides

CLIC 30 GHz TDS Prediction vs Exp

Good agreement achieved up to ~ 2 ns
Resonance, not included in prediction simulations, at 7.6
GHz, *external* to structure leads discrepancy between theory/exp.

Ref: I. Wilson et al., Proceedings of the 2000 European Particle Accelerator Conference (EPAC00), Vienna, Austria, 2000

CLIC09 Workshop, October 12th - 15th, 2009, CERN

STER

The Un of Man

5. Extra Slides

and Measurement (ASSET dots)

*Refs: 1. R.M. Jones, et al, New J.Phys.*11:033013,2009. 2. *R.M. Jones et al., Phys.Rev.ST Accel. Beams* 9:102001, 2006. 3. *R.M. Jones, Phys.Rev.ST Accel. Beams, Oct.*,2009.