Silicon Tracking Simulation

CLIC09 October 15, 2009

Christian Grefe

CERN, Bonn University

- Layout of full silicon tracker
- Tracking simulation & track finding
- Tracking efficiency studies
- Outlook

Work in progress

- Based on the SiD concept all silicon tracking
 - Vertex and forward: 5 barrel + 7 disk detectors (20 x 20 μ m² pixels)
 - Outer tracker: 5 barrel (axial strip) + 4 disk (stereo strip) detectors (9 cm x 25 μm)
 - ~ 10 precise hits per track

- Higher beam-induced background requires larger inner radius of vertex tracker (30mm instead of 15mm)
- Changes to achieve similar angular coverage
 - Longer barrel region
 - Larger disk detectors
 - Moved disks closer together (including first forward disk)

- Outer tracker unchanged
- Overall angular coverage sustained
- ~10 hits down to low angles

October 15, 2009, Christian Grefe

Sandro Palestini

- Full simulation using GEANT4 (slic)
- Modeled tracker using cylinders and disks (like SiD LOI)
- "Virtual segmentation" to divide disks and cylinders into individual sensors after simulation
- Digitization and reconstruction using Java-based org.lcsim framework
- Track finding code (SeedTracker) using default SiD02 strategies
- Simulated di-jet events at several energies
 - Presented here are results for light quark (uds) events for $E_{cm} = 3 \text{ TeV}$

- Track finding begins by forming all possible 3 hit track seeds in the three "Seed Layers"
 - Brute force approach to finding all possible track seeds
- Require the presence of a hit in a "Confirmation Layer"
 - Significantly reduces the number of candidate tracks to be investigated
- Add hits to the track candidate using hits on the "Extension Layers"
 - Discard track candidates with fewer than 7 hits (6 hits for barrel only tracks)
 - If two track candidates share more than one hit, best candidate is selected
- Upon each attempt to add a hit to a track candidate, a helix fit is performed and a global χ^2 is used to determine if the new track candidate is viable

Seed

Richard Partridge

- Strategy requirements
 - At least 7 hits on the track
 - Only 1 hit per layer
 - Special barrel only strategy with 6 hits used to pick up low- p_T particles in the central region
 - p_T > 0.2 GeV
 - r ϕ and s z impact parameter cuts $|d_0| < 1$ cm and $|z_0| < 1$ cm
 - $\chi^2 < 50 \ (\chi^2 < 25 \text{ for } 6\text{-hit barrel only strategy})$
 - Findable tracks
 - Tracks that pass strategy requirements
 - On the following slides: tracking efficiency defined as nReconstructed / nFindable

- Dips of barrel-endcap transition for vertex and main tracker clearly visible
- Only affects low p_t tracks
- Need to align vertex and main tracker transitions

- Drop of efficiency for low p_t
- Significant drop in efficiency already at ~100 GeV algorithm fails in dense environments

- Vertex resolution is limiting factor for dense tracks
- Loosing only some VTX hits is fatal need 6 of 10 possible hits
- Will be worse when overlaying background in Vertex
- Need to extend tracking algorithm main tracker should be sufficient for high \mathbf{p}_{t} track reconstruction

- Momentum resolution fulfills requirement of $\sigma_p/p \approx 5^*10^{-5}$ 1/GeV for angles greater than 20°

- Comparison with MC truth after track reconstruction
 - Count hits which are associated with different MC particles
 - >99% have less than 2 falsely assigned hits
 - Very low fake track rate

Z -> uds (3 TeV)

• First model uses cylinders and disks for tracker

October 15, 2009, Christian Grefe

Page 14

Page 15

- First model uses cylinders and disks for tracker
- Updated geometry uses individual tiles
 - Realistic overlaps, realistic angles

• Geometry ready \rightarrow starting simulations soon

- Used SiD tracker layout with modified vertex and forward region
- SiD tracking software working out of the box
- Initial tracking performance studies done, some improvements needed
 - Align vertex detector and main tracker barrel-endcap transition
 - Efficiency for high p_t has to be improved (use adapted strategies)
 - Investigate impact of pixel size
- Future plans
 - Investigate impact of beam-induced background
 - Time-stamping requirements?
 - Impact of planar trackers (increased material budget)