

Welcome to CLIC09

Participants: 247 (registered) from 78 Inst. of 22 countries

- Bulgaria: Acad. of Science
- China: Tsinghua University
- Finland: Helsinki Univ, HIP
- France: CEA/IRFU, Ecole Norm Sup, LLR-Ecole Polyt, IN2P3/LAL, IPNL, LAPP, LPHNE, UPMC
- Germany: Bonn Univ., DESY, Karlsruhe Univ, MaxPlanck Inst.
- Greece: NTU Athens
- India: BARC-RRCAT,
- Italy: INFN/LNF, Florence, Genova, Cockcroft Inst., Daresbury Lab, JAI, Lecce
- Japan: KEK, Shinshu Univ, Tokohu Oxford Univ, RAL, RHUL, STFC, Univ College London Univ
- Kenya: Jomom Kenyatta Univ
- Netherland: NIKHEF
- Norway: Univ of Oslo
- Pakistan: NCP
- Russia: BINP, IAP, ITEP, JINR J.P.Delahaye

- Romania: IFIN-HH
- Spain: CIEMAT, IFIC, Catalonia Univ.
- Sweden: Uppsala Univ.
- Switzerland: ADAM, EPFL, ETH-Zurich, Lulea Univ Techn, PSI
- Turkey: Abant I B Univ, Ankara Univ, Dumlupinar Univ, TAEA, Uludag Univ
- United-Kingdom: ASTeC, Birmingham Univ., Cambridge Univ,
- Lancaster Univ, Manchester Univ.,
- - United-States: ANL, BNL, Caltech, Cornell Univ., Euclid Techlabs, FNAL, Iowa State Univ, LBNL, LLNL, Minesota Univ, Ohmega-P, Oregon Univ, SLAC, Yale Univ
 - **EP, JINK** Vietnam: Hanoi Univ CLIC progress and perspectives (12 10 09)

CLIC 09

http://indico.cern.ch/conferenceDisplay.py?confId=45580

Progress from CLIC08 CLIC feasibility issues R&D program, status and plans Preparation of Conceptual Design Report CLIC Collaboration & collaboration with ILC Conclusion

http://clic-study.web.cern.ch/CLIC-Study/

J.P.Delahaye for the CLIC Collaboration

Towards CLIC Conceptual Design

- Demonstrate feasibility of CLIC technology
 - Address all feasibility issues
- Design of a linear Collider based on CLIC technology
 http://clic-study.web.cern.ch/CLIC-Study/Design.htm
- CLIC Physics study and detector developmen http://clic-meeting.web.cern.ch/clic-meeting/CLIC Phy Study Website/det LCD project
- Estimation of its cost (capital investment & operation)
- Conceptual Design Report (CDR) by end 2010 including
 - Physics, Accelerator and Detectors
 - R&D on critical issues and results of feasibility study,
 - Preliminary performance and cost estimation

J.P.Delahaye

CLIC Parameters Range

http://cdsweb.cern.ch/record/1132079/files/CERN-OPEN-2008-021.pdf

CLIC main parameters

CLIC http://cdsweb.cern.ch/record/1132079?ln=fr http://clic-meeting.web.cern.ch/clic-meeting/clictable2007.html

Center-of-mass energy	CLIC	500 GeV	CLI	C 3 TeV
Beam parameters	Relaxed	Nominal	Relaxed	Nominal
Accelerating structure	5	502		G
Total (Peak 1%) luminosity	8.8(5.8)·10 ³³	2.3(1.4)·10 ³⁴	7.3(3.5)·10 ³³	5.9(2.0) ·10 ³⁴
Repetition rate (Hz)			50	
Loaded accel. gradient MV/m	1	80		100
Main linac RF frequency GHz			12	
Bunch charge10 ⁹		5.8		3.72
Bunch separation (ns)			0.5	
Beam pulse duration (ns)	1	.77		156
Beam power/beam MWatts	4	4.9		14
Hor./vert. norm. emitt (10 ⁻⁶ /10 ⁻⁹)	7.5/40	4.8/25	7.5/40	0.66/20
Hor/Vert FF focusing (mm)	4/0.4	4 / 0.1	4/0.4	4/0.1
Hor./vert. IP beam size (nm)	248 / 5.7	202 / 2.3	101/3.3	40 / 1
Hadronic events/crossing at IP	0.07	0.19	0.28	2.7
Coherent pairs at IP	10	100	2.5 107	3.8 10 ⁸
BDS length (km)	1	.87		2.75
Total site length km	1	3.0		48.3
Wall plug to beam transfert eff	7.	5%	6	.8%
Total power consumption MW	12	29.4		415

CLIC critical issues R&D strategy and schedule

- Overall list of critical issues (Risk Register) under: https://edms.cern.ch/nav/CERN-0000060014/AB-003093
- **Issues classified in three categories:**
 - CLIC design and technology feasibility Fully addressed by 2010 by specific R&D with results in Conceptual Design Report (CDR) with Preliminary Performance & Cost
 - Performance and/or Cost

Both being addressed now by specific R&D to be completed before 2016 with results in Technical Design Report (TDR) with Consolidated Performance & Cost

10 CLIC Feasibility Issues

Two Beam Acceleration:

- Drive beam generation
- Beam Driven RF power generation
- Two Beam Module
- **RF Structures**
 - Accelerating Structures (CAS)
 - Power Production Structures (PETS)
- Ultra low beam emittance and beam sizes
 - Emittance preservation during generation, acceleration and focusing
 - Alignment and stabilisation
- Detector

- CLIC ILC Common Issues CLIC more challenging requirements
- Adaptation to short interval between bunches
- Adaptation to large background at high beam collision energy
- Operation and Machine Protection System (MPS)

Feasibility of (at least) relaxed parameters

CLIC specific

CLIC feasibility issues

System Item		Parameter Issue	Test facility
			Common with ILC
	Drive heam	100 A peak current / 590 μ C total charge	CTF3 CTF3/TBI
	generation	0.2 degrees phase stability at 12 GHz (0.1 psec)	Simulations
Two Beam	8	$7.5 \ 10^{-4}$ intensity stability	X-FEL, LCLS
Acceleration	Beam Driven RF power generation	90% conversion efficiency from drive beam to RF Large drive beam momentum RF pulse shape accuracy < 0.1%	CTF3/TBL Simulations
	Two beam module	Two Beam Acceleration at nominal parameters	CTF2&3/TBTS
DF	Accelerating Structures (CAS)	100 MV/m 240 RF pulse length with flat top 160ns breakdown probability/pulse < 3.10-7 /m	CTF2&3 SLAC/NLCTA&NASTA KEK/NEXTEF
Structures	Power Production Structures (PETS)	132 MW total flat-top pulse length 240/160 ns breakdown probability/pulse < 1.10-7 /m On/Off/adjust capability	CTF3 CTF3/TBTS & TBL SLAC/ASTA
Ultra low beam	Emittance preservation	during generation, acceleration and focusing: Emittances (nm): H= 600, V=5 Absolute blow-up (nm): H=160, V=15	ATF, SLS, NSLSII Simulations LCLS, SCSS
& sizes	Alignment and stabilisation	Main Linac : 1 nm vert. above 1 Hz BDS: 0.15 to 0.5 nm above 4 Hz	CESRTA ATF2
Detector	Short interval between bunches	Time stamping: 0.5 nsec bunch interval	Simulations
Detector	Background at high beam collision energy	Beam-Beam background: 3.8 10 ⁸ coherent/1e5 incoherent e+/e- pairs, Hadrons, High muon flux	Simulations
Operatio Protectio <i>Plahaye</i>	on and Machine n System (MPS) <i>CLIC</i>	drive beam power of 72 MW @ 2.4 GeV main beam power of 13 MW @ 1.5 TeV MTBFe MTTRd perspectives (12 - 10 - 09)	CTF3 Simulations

8

CLIC Drive Beam generation

J.P.Delahaye

CTF3 completed, operating 10 months/year, under commissioning:Drive Beam Generation demonstrated

Drive Beam Generation Feasibility

Feasibility	Unit	Nominal	Feasibility	Achieved	How	Feasibil
Issue			Target			ity
		@ 2 GeV	@ 0.2Gev	@2 GeV		
Fully loaded accel effic	%	96	95	95	CTF3	\checkmark
Freq&Current multipl		2*3*4	2*4	2*4	CTF3	\checkmark
12 GHz beam current	Α	4.5*24=100	3.75*8=30	3.6*8=27	CTF3	\checkmark
12 GHz pulse length	nsec	240	140	140	CTF3	\sim
Bunch length	mm	1	1mm	?	CTF3	?
Timing stability	psec	0.1 psec	?	?	XFEL	
Intensity stability	10⁻⁴	7.5	30	30 @ * 4	CTF3	~ @*4

Drive beam generation feasibility demonstrated

- Intensity stability still to be improved
- Timing stability to be addressed (XFEL collab)

CLIC – Power Generation

J.P.Delahaye

CTF3/CLEX (CLIC Experimental Area)

Test Beam Line TBL

Two Beam Test Stand

Ē

Probe Beam

Construction during 2006/beg 2007 installation of equipment from 2007 - 2009

Beam in CLEX from June 2008 onwards

J.P.Delahaye

existing building

10 m

Test Beam Line (TBL)

Beam driven RF Power Generation Feasibility

\checkmark
\checkmark
under cond.
Being built
TBL being
installed

- **RF power generation by single PETS feasibility demonstrated except for breakdown rate.**
- ON/OFF mechanism being built, still to be tested
- Efficient RF power extraction in multiple stages still to be addressed in TBL (being built for tests in 2010)

Accelerating Structure Performances

Accelerating Structures

- Nominal parameters demonstrated with high reproducibility:
 - 3 structures tested over 3 structures fabricated with identical procedure derived from NLC/JLC
 - 100MV/m loaded, 140 nsec pulse, ≤3. 10⁻⁷/m breakdown rate
- Excellent and fruitful collaboration with SLAC and KEK
 - RF Design by CERN based on rules derived from NLC, JLC and CLIC power tests results at various RF frequencies
 - Tests taking advantage of X band RF power facilities available at SLAC and KEK
- Number of tests limited by available facilities
 - 12 GHz stand alone test stand in fabrication (with SLAC klystron derived from NLC and major contribution of Saclay)
 - Available at CERN mid 2010
- Tests before (?) end of the year:
 - Fully equipped with high order mode damping
 - New design with high(er) efficiency
- Tests next year: Larger statistics

Applications of X band accelerating structures: CArbon BOoster Therapy in Oncology (TERA) PSI/X-FEL & ELETTRA Linac based X-FEL

W.Farabolini

waveguide RF distribution

J.P. Delanaye

Klystron and BOC

Two Beam Test Stand (TBTS) in CTF3/CLEX

J.P.Delahaye

CLIC Two Beam Module

Two Beam Module tests in CTF3/CLEX

Test module representative of all module types integrating all various components: RF structures, quadrupoles, instrumentation, alignement, stabilisation, vacuum, etc....

J.P.Delahaye

Civil Engineering and Services (CES) :

•Tunr J.Osborne

•Cool •Cool •ILC Common CLIC ILC issue Use of same methods, tools, consultants

•Safety issues for underground structures

•ILC underground layouts

J.P.Delahaye

•Tran

Two Beam Acceleration Feasibility

Feasibility	Unit	Nominal	Feasibility	Achieved	How	Feasibility
Issue			Target			
Structure Acc field	MV/m	100	100	100	Test	No Damping
Structure Pulse length	ns	240	240	240	stand/	
Structure Breakd. rate	/m	< 3·10-7	< 3·10-7	< 3·10-7		
Two Beam acceleration	MV/m	100	100	-	TBTS	Under
module	ns	240	240	-		constuction

Acceleration Structure with nominal parameters demonstrated without damping:

- RF to beam efficiency still to be improved.
- Structures with Damping being built still to be tested.

Two beam acceleration principle demonstrated in CTF2

• Two Beam Test Stand being built integrating (final) prototypes with power and beam tests in CTF3

J.P.Delahaye

CLIC – main beam generation

The CLIC Main Beam Injector complex

SC Wigglers

- Two **493m** long rings of racetrack shape @ **2.86GeV**
- Arcs filled with **TME cells** and straights λw with **2m-long superconducting** damping wigglers (**2.8T**, 4**cm** period)
- IBS dominated beam emittance
- Issues to be addressed:
 - Lattice optimization (magnet design, non-linear dynamics)
 - Superconducting wiggler design (NbTi/Nb₃Sn, radiation absorption)
 - Collective effects (e⁻ cloud, IBS)
 - RF system considerations
 - ILC/CLIC DR common issues
 - Pre-damping ring design (positron stacking)

• SC wiggler prototype fabrication in collaboration with BINP and future tests with beam in ANKA/Karlsruhe J.P.Delahaye CLIC progress and pers

Parameters	BINP	CERN/ Karlsruhe
B _{peak} [T]	2.5	2.8
λ _w [mm]	50	40
Beam aperture full gap [mm]	13	13
Conductor type	NbTi	NbSn ₃
Operating temperature [K]	4.2	4.2

KEK ATF

Addressing feasibility of small beam emittances by international collaboration hosted by KEK

Additional tests on Electron Clouds in CESRTA/Cornell in close collaboration with ILC

Beam emittance preservation

Beam Dynamics, alignment and stability

Emittance blow-up from Damping Ring to BDS limited: in Horizontal to 30% from 500 nrad in Vertical to 300% from 5 nrad

Alignment procedure based on:

- Accurate pre-alignme
- **Beam-based alignme**
- Alignment of accelera
- Tuning based on lum

hents: 15µm with good resolution (100nm) eam using wake-monitors urement with 2% resolution

Beam stability by quadrupole stabilisation:0.3nm beam-beam stability@IP

D.Schulte

- quadrupole passive and active stabilisation
- beam feedback (pulse to pulse)
- Intrabeam feedback

Quadrupole Magnets	Horizontal	Vertical				
Linac (2600 quads)	14nm	1.3 nm				
Final Focus (2quads)	4 nm	0.2 to 0.5 nm				
(ITC progress and perspectives (12 - 10 - 09)						

J.P.Delahaye

Improved pre-alignment for Two-beam Module Integration

- ✓ Straight alignment reference over 20km by overlapping stretched wires
- ✓ References position measured with Wire Positioning Sensors (WPS) 200 m

- ✓ Girders pre-aligned ("articulation point") in respect with Wires
- Quadrupoles pre-aligned independently

Validation & integration in Two Beam Module Test Stand

Nanometer Stabilisation

J.P.Delahaye

Rogelio

Focusing to nanometer beam sizes in **Beam Delivery System (BDS)**

The CLIC BDS

System

p.1/2

Nanometer beam sizes in KEK ATF2

Improved performances to address CLIC issues: small(er) beam sizes and high(er) chromaticities

Machine Detector Interface

L.Gatignon	• FD sub-nm jitter tolerance Intra-train feedback within 50 nanosec train Active mechanical
Steer Yoke	stabilization of FD •Push pull detector mode

Large CLIC ILC synergies: Improved Final Doublet Support (stabilisation) Integration into detector Push pull mode) Intra-beam feedback

J.P.Delahaye

Beam Emittances Preservation Feasibility

Feasibility	Unit	Nominal	Feasibility	Achieved	How	Feasibility
Issue			Target			
Emit blow-up H	Nm	H=160,	H=160,	H=160,	Simul	
Emit blow-up H	nm	V=15	V=15	V=15	ation	-
Dro Alignmont	mianona	15	10	10	Test	Module
rre-Anginnent	IIICTOIIS	15	10	(principle)	bench	integration
Stabilisation Vert:					Tect	Real quad
Quad Main Linac	nm>1 Hz	1.3	1	0.5	1 est	and real
Final Doublet	nm>4 Hz	0.15 to 0.5	1	(principle)	Dench	environment

• Ultra low beam emittances addressed in ATF2, SLS & NSLS2

- Emittance preservation by simulation bench-marked CTF3
- Principle of 10 micron Pre-Alignment demonstrated in CTF2 Feasibility by upgraded method integrated Module Test Bench
- Principle of sub-nanometer active stabilisation demonstrated Feasibility of nm stabilisation with main linac quad prototype (400 kGs) addressed with tests in lab and integration in Two Beam Module

Application to realistic detector environment (adequate support)J.P.DelahayeCLIC progress and perspectives (12 - 10 - 09)42

R&D on Detectors feasibility

Item	Parameter Issue	Test facility
		Common with ILC
Short interval between bunches	Time stamping: 0.5 nsec bunch interval	Simulations
Large background at high beam collision energy	Beam-Beam background: 3.8 10 ⁸ coherent/1e5 incoherent e+/e- pairs, Hadrons, High muon flux	Simulations

R&D on CLIC feasibility issue: Operation & Machine Protection System

System	Item	Parameter Iss	Test facility	
				Common with ILC
Oneration and Machine		drive beam power of 72 MW @	2.4 GeV	(TE)
Protection	n System (MPS)	M.Jonker	1.5 TeV	Simulations

Working Group just starting Taking advantage of LHC experience ! Great synergy with ILC main beam (11MW @ 500GeV) Common reflection on reliability & availability

CLIC Tentative Schedule

J.P.Delahaye

CLIC progress and perspectives (12 -

Conceptual Design Report

Coordinator/editor: H.Schmickler

Contribution/Authors by CLIC collaborators

- **3 volumes: similar to ILC CDR:**
 - Vol1: Executive Summary
 - Vol2: Physics at CLIC and Detectors
 - Vol3: The CLIC accelerator and site facilities
 - Detailed value Estimate

specific contribution in vol. 2-4; summary in vol. 1.

Outline with Authors/abstract & key words by end 09 Taking advantage of CLIC09 to discuss and define contributions Progressive redaction from early 2009 Preliminary draft at LC 2010?

... •

Aarhus University (Denmark) Ankara University (Turkey) Argonne National Laboratory (USA) Athens University (Greece) BINP (Russia) CERN CIEMAT (Spain) Cockcroft Institute (UK) Gazi Universities (Turkey)

33 Institutes involving 22 funding agencies from 18 countries

Helsinki Institute of Physics (Finland) IAP (Russia) IAP NASU (Ukraine) INFN / LNF (Italy) Instituto de Fisica Corpuscular (Spain) IRFU / Saclay (France) Jefferson Lab (USA) John Adams Institute (UK) JINR (Russia) Karlsruhre University (Germany) KEK (Japan) LAL / Orsay (France) LAPP / ESIA (France) NCP (Pakistan) North-West. Univ. Illinois (USA) Patras University (Greece)

Polytech. University of Catalonia (Spain) PSI (Switzerland) RAL (UK) RRCAT / Indore (India) SLAC (USA) Thrace University (Greece) University of Oslo (Norway) Uppsala University (Sweden)

+

NN

CLIC/CTF3 Multi-Lateral

Collaboration of Volunteer Institutes

33 Institutes involving 22 funding agencies from 18 countries Organized as a Physics Detector Collaboration Collab. Board: Chair: K.Peach/JAI; Spokesperson: G.Geschonke/CERN MoU with addenda describing specific contribution (& resources)

http://clic-meeting.web.cern.ch/clic-meeting/CTF3_Coordination_Mtg/Table_MoU.htm

Members (full responsibility of work packages and providing corresponding resources):

 11 CERN members with additional voluntary contributions: CERN, Finland (HIP), Denmark (Aarhus), France (IRFU, LAL, LAPP), Germany (Karlsruhe), Greece (Athens, Patras, Thrace), Italy (LNF), Norway (Oslo U.), Spain (CIEMAT, UPC, IFIC), Sweden (Uppsala), Switzerland (PSI), UK (Cockcroft, JAI, RAL)

• 7 CERN non members with voluntary contributions: India (RRCAT), Japan (KEK), Pakistan (NCP), Russia (BINP, IAP, JINR), Turkey (Ankara U., Gazi U.), Ukraine (IAP), USA (ANL, JLAB, NWU, SLAC)

MoU under discussion: China (IHEP, Tsinghua Univ.), Iran (IPM),

European Space Agency (ESA), TERA CLIC progress and perspectives (12 - 10 - 09)

J.P.Delahaye

Extremely fruitful CLIC /ILC Collaboration http://clic-study.web.cern.ch/CLIC-Study/CLIC_ILC_Collab_Mtg/Index.htm

• Common working groups on technical subjects with strong synergy between CLIC & ILC:

Physics & Detectors

Beam Delivery System (BDS) & Machine Detector Interface (MDI)

Civil Engineering & Conventional Facilities

Positron Generation

Damping Rings Beam Dynamics Cost & Schedule

ILC GDE Director: B.Barish

• Recently extended with joint W.G. on Linear Collider General Issues (Accelerator & Detectors)

LC2010 ECFA workshop (20-24/09/2010 @ CERN) Joint CLIC & ILC (Accelerator and Detectors) CLIC progress and perspectives (12 - 10 - 09)

J.P.Delahaye

Conclusion

- CLIC work program well established and (still) on schedule to address CLIC feasibility issues with preliminary performance and cost, but still a lot of work:
 - CTF3 completion (TBL..) and commissioning (consolidation)
 - RF structure: fabrication&test of fully equipped structures (Accel&PETS)
 - Technical feasibility issues: alignment, stabilisation, inst., etc.
- Conceptual Design Report by end 2010
- Challenging program and tight schedule! all welcome to contribute

Only possible due to outstanding contributions of CLIC Collaboration in the past, present and future

Close CLIC / ILC collaboration extremely beneficial for Linear Colliders in preparation for best possible facility adapted to Physics following LHC results J.P.Delahaye CLIC progress and perspectives (12 - 10 - 09) 50

Spares

LC 500 GeV Main parameters

Center-of-mass energy	NLC 500 GeV	ILC 500 GeV	CLIC 500 G Relaxed	CLIC 500 G Nominal
Total (Peak 1%) luminosity	2.0(1.3)·10 ³⁴	2.0(1.5)·10 ³⁴	0.9(0.6) 1034	2.3(1.4)-10 ³⁴
Repetition rate (Hz)	120	5		50
Loaded accel. gradient MV/m	50	33.5		80
Main linac RF frequency GHz	11.4	1.3 (SC)		12
Bunch charge10 ⁹	7.5	20		6.8
Bunch separation ns	1.4	176		0.5
Beam pulse duration (ns)	400	1000		177
Beam power/linac (MWatts)	6.9	10.2		4.9
Hor./vert. norm. emitt (10 ⁻⁶ /10 ⁻⁹)	3.6/40	10/40	7.5 / 40	4.8 / 25
Hor/Vert FF focusing (mm)	<mark>8/0.1</mark> 1	20/0.4	4/0.4	4/0.1
Bunch length (microns)	100	300	100	72
Hor./vert. IP beam size (nm)	243/3	640/5.7	248 / 5.7	202/ 2.3
Soft Hadronic event at IP	0.10	0.12	0.07	0.19
Coherent pairs/crossing at IP	10?	10?	10	100
BDS length (km)	3.5 (1 TeV)	2.23 (1 TeV)		1.87
Total site length (km)	18	31		13.0
Wall plug to beam transfer eff.	7.1%	9.4%		7.5%
J Total power consumption MW	195	216	1	129.4

CLIC – layout @ 500 GeV

J.P.Delahaye

CLIC performances (FoM) and cost (relative) as a function of the accelerating gradient

- Performances increasing with lower accelerating gradient (mainly due to higher efficiency)
- Flat cost variation in 100 to 130 MV/m with a minimum around 120 MV/m

J.P.Delahaye

CLIC performances (FoM) and cost optimisation as function of RF frequency

- Maximum Performance around 14 GHz
- Flat cost variation in 12 to 16 GHz frequency range with a minimum around 14 GHz

J.P.Delahaye

Tentative long-term CLIC scenario Shortest, Success Oriented, Technically Limited Schedule

Technology evaluation and Physics assessment based on LHC results for a possible decision on Linear Collider with staged construction starting with the lowest energy required by Physics

J.P.Delahaye

J.P.Delahaye