

SLAC Work Status for the CLIC High Gradient Accelerator Structure R&D

Juwen Wang CLIC 09 October, 2009

Outline

- 1. Introduction
- 2. Work in the Past
- 3. Structure Fabrication Technology
- 4. Ongoing Work
- 5. Scope for Future Work

1. Introduction

Statement from CLIC07 Workshop

- Our urgent priority is to produce X-band test structures based on optimized X-band designs.
- One of our most important feasibility demonstrations is operating a fully featured accelerating structure at 100 MV/m and the full pulse length with an appropriate breakdown rate.
- To speed up this process, and to benefit from all the development work made by NLC/JLC, SLAC and KEK are also producing test structures.
- In the coming year, all testing which could lead to a feasibility demonstration will occur at SLAC and KEK.
- We hope that our colleagues at SLAC and KEK get good support from their management!

- Experiences in accelerator electrical design.
- Experiences in accelerator mechanical design and fabrication technologies.
- Fabrication of test structures designed by CLIC, SLAC and KEK.
- Microwave tuning and characterizations of test structures.
- High power tests for test structures at 11424 MHz test stations.

2. Work in the Past

Work Done Since the Collaboration

- 1. Eleven structures have been made and five high power tested
 - 1 x T28_vg2.9 (T26) Structure Used T53VG3MC components and completed by the end of May, 2008 High power tested in the NLCTA since June 2008.
 - 4 x T18_VG2.4_DISC Structures #1, #2, #3, #4 Two with SLAC flanges, high power tested successfully at NLCTA One with KEK flanges has also been successfully tested at KEK
 - 2 x TD18_VG2.4_DISC Structures #1, #2 Fabrication completed (one with SLAC flanges, one with KEK flanges)
 - C10 Structures: 2 x C10_VG 1.35 #1, #2 and 2 x C10_VG 0.7 #1, #2 Fabrication completed, one (VG1.35) of four structures preliminary tested

2. Five CERN made test structures high power tested

- SLAC Provided RF feed and related components for tank versions
- HDX11 Cu Structure and Mo Structure Electrical polishing and reassembly and Microwave evaluation
- T18_VG2.6_QUAD Cooling tube flanges brazed at a hydrogen furnace with 25/75 Au/Cu alloy Four quadrant assemblies vacuum baked at 650°
- T18_VG2.6_DISK Assembled in the tank at SLAC
- T24_VG2.4_DISK Assembled in the tank at SLAC

Some CERN made Structures Tested at SLAC

(Yellow = Quad Cell Geometry, Green = Disk Cell Geometry)

In Beamline	Structure	Note	Performance
11/06 – 2/07	C11vg5Q16	First X-band Quad	Poor: 57 MV/m, 150 ns, 2e-5 BDR – grew
NLCTA	(HDX11)	- Irises Slotted	whiskers on cell walls
2/08 - 4/08	C11vg5Q16	Refurbished	Initially good (105 MV/m, 50 ns,1e-5 BDR) but
NLCTA	(HDX11)		one cell degraded
4/07 – 10/07	C11vg5Q16-Mo	Molybdenum Version	Poor: 60 MV/m, 70 ns, 1e-6 BDR
NLCTA	(HDX11)	of Above	
10/08 – 12/08	TD18vg2.6_Quad	No Iris Slots but WG	Very Poor: would not process above 50
NLCTA		Damping	MV/m, 90ns – gas spike after BD
12/08 – 2/09	T18vg2.6-Disk	CERN Built, Operate	Very Poor: very gassy with soft breakdowns
NLCTA		in Vacuum Can	at 60 MV/m, 70 ns
8/09 – 8/09 NLCTA	T24vg2.4-Disk	CERN Built, Operate in Vacuum Can	Very poor: 40 MV/m, 100 ns, breakdown uniformly throughout the structure

Even though the gradients were not satisfactory, but a lot of knowledge and experiences have been obtained.

Some of KEK/SLAC Made Accelerator Structures for Testing CLIC Main Linac Design

T18_VG2.4_DSC with SLAC Flanges

T28_VG2.9 (T26) with SLAC Flanges

TD18_VG2.4_DISC with SLAC Flanges

TD18_VG2.4_DISC with KEK Flanges

(Yellow = Quad Cell Geometry, Green = Disk Cell Geometry)

In Beamline	Structure	Note	Performance
4/08 – 7/08	T18_VG2.4_DISK-I	Cells by KEK,	Good: 105 MV/m, 230 ns at LC BDR spec
NLCTA		Assembled at SLAC	of 5e-7/pulse/m but hot cell developed
7/08 – 10/08	T18_VG2.4_DISK-I	Powered from	Good: 163 MV/m, 80 ns, 2e-5 BDR
NLCTA		Downstream End	in last cell.
10/08 – 8/09	T18_VG2.4_DISK-II	Cells by KEK,	Good: 105 MV/m, 250 ns at BDR of 2e-
KEK		Assembled at SLAC	6/pulse/m with 4000 hours processing
6/09 – 9/09 NLCTA	T18_VG2.4_DISK-III	Cells by KEK, Assembled at SLAC	Good: Still under testing. Similar like T18vg2.6-Disk-I with low breakdown rate at 110 MV/m, 230 ns after 400 hours

T18_VG2.4_DISC Structures

Frequency.	11.424GHz	300	P ^{load} in	^d = 60.	8 MW,	P ^{load} =	= 31.7	MW				
Cells	18+input+output	ີ ຕົ _ສ 250	Eff = t _r = '	17.9 % 18.2 ns	t _f = 33	3.3 ns, 1	t _p = 26	9.3 ns	 	 		5.1
Filling Time	36ns) [MV/I		 	 	 						249
a _{in} /a _{out}	4.06/2.66 mm	200 (m ²) (m		 					 	+	 	
Vg _{in} /Vg _{out}	2.61/1.02 (%c)	I (ueeu) [W M/M 150	3.1			 	 	 - 	 		 	134
S ₁₁	0.035	, Е _s (с S _c *50		 	 	 						
S ₂₁	0.8	(blue), (blue),	81		 				 	 	 	
Phase	120Deg	MM MM 50	<u> 60.</u>	8				- - 		, , , , , , , , , , , ,	· '	<u>-42.9</u>
Average Unloaded	55.5MW→	╸	14.	8	 	 	 					22.9
Gradient	100MV/m	0	0	2	4	6	8	10	12	14	16	1

Microwave Tuning and test

High power test set-up

The following 900hrs, maximum unloaded gradient is 120MV/m

Breakdown Rate Characteristics at Different Conditioning Time

This performance *maybe* good enough for 100MV/m structure for a warm collider, however, it does not yet contain all necessary features such as wake field damping. Future traveling wave structure designs will also have better efficiencies

T18_VG2.4_DISC-III at NLCTA for High Power Test

3. Structure Fabrication Technology

Cleaning of Accelerator Parts

For accelerator structure parts with single diamond tuning surfaces:

- 1. Vapor degrease in 1,1,1 trichloroethane or equivalent degreaser for 5 minutes.
- 2. Alkaline soak clean in Enbond Q527 for 5 minutes at 180°F.
- 3. Cold tap water rinse for 2 minutes.
- 4. Immense in 50% hydrochloric acid at room temperature for 1 minutes.
- 5. Cold tap water rinse for 1 minute.
- 6. Immense in the following solution for maximum of 5 seconds depending on the surface finish required:

Phosphoric Acid, 75%	21 gallons
Nitric Acid, 42° Baume	7 gallons
Acetic Acid, Glacial	2 gallons
Hydrochloric Acid	12.6 fluid ounces
Temperature	Room

- 7. Cold tap water rinse for minimum of 2 minutes until the film on part disappears.
- 8. Ultrasonic in DI Water for 1 minute.
- 9. Ultrasonic in new, clean alcohol for 1 minute.
- 10. Final Rinse to be done in new, clean alcohol.
- 11. Hold in clean alcohol in stainless steel containers.
- 12. Dry in a clean room using filtered N2.

For accelerator structure parts with regular machining surfaces:

6. Immense in the following solution for maximum of 30-60 seconds depending on the surface finish required:

ZYGO Surface Flatness Measurement for a Typical Cup of T18_VG2.4_DISC #3 and #4

Both sides show less than 1 micron concaved

14D-C

17D-C

Stacking for Body Bonding of T18_vg2.4_DISC

Diffusion Bonding of T18_vg2.4_DISC

Pressure: 60 PSI (60 LB for this structure disks) Holding for 1 hour at 1020° C

Brazing of QUAD with Water Flange

Au/Cu Alloy: 25/75 Brazing temperature: 1041-1045° C HEAT: 12531

First Assembly Brazing of T18_vg2.4_DISC

Body / Two Coupler Assemblies / Cooling/One Beam Pipe / Tuning Studs

Brazing temperature: 1021-1025° C

Final Brazing of T18_vg2.4_DISC

Brazing temperature: 979-983° C Adding One Beam Pipe

Flange Welding for a T18_VG2.4_DISK Structure

Microwave Tuning and Characterization

J. Lewandowski

Vacuum Baking of T18_vg2.4_DISC

650° C 10 days

5. Ongoing Work

Ongoing Program for Structures

1. C10 Structures: 2 x C10_VG 1.35 #1, #2 and 2 x C10_VG 0.7 #1, #2

All four assemblies are completed One VG1.35 in preliminary high power test with problem in RF feed More testing after resolving the problems in circular waveguide junction

2. TD18_VG2.4_DISK #2, #3

Microwave tuning both structures completed Vacuum baking underway Shipping #3 with KEK flanges to KEK Assembly of the structure with SLAC flanges in preparation High power test in October

3. Plan to retest TD18_VG2.4_QUAD

Chemical cleaning done Planning to have hydrogen firing and Vacuum baking Reassembly and microwave check in March.

Schematic View for C10 Structures - I

Structure Assembly

TM01 Mode Launcher

First C10_VG1.35 Structure

Average Eacc=100 MV/m at Pin=48 MW

Microwave measurement after tuning

First C10_VG1.35 Structure Under High Power Test

First C10_VG1.35 Structure after High Power Test

Input Side

Output Side

Input Side

Output Side

Characteristics of TD18_VG2.4_DISK Structures

SLACE Tuning Results for TD18_VG2.4_DISK

Frequency (GHz)

6. Scope for Future Work

Work in the Near Future

1. TD18 VG2.4 DISK #2, #3 After baking, High power testing at SLAC and KEK 2. Three more C10 Structures 1xVG1.35 and 2xVG0.7 Microwave tuning and High power testing 3. Four more C10 Structures 2xVG2.25 and 2xVG3.3 All parts ordered SLAC Assembly, tuning and High power testing 4. TD18 VG2.4 DISK #1 CERN made in a can High Power Testing at SLAC 5. TD24 VG1.8 DISK #1 **CERN** made High power testing at SLAC 6. CD10 2 x VG1.35 #3 **CERN** made High power testing at SLAC 7. CD10 2 x VG1.35#1, #2 **KEK** machining Assembly, Tuning art SLAC and High power testing at SLAC/KEK 8. T-500GeV CERN made and High power testing at SLAC