

How to Establish a **Straight Line** on the **Dynamic Curved** Surface of the **Earth** ?

J. Boerez, S. Guillaume, M. Jones

CLIC09 Workshop

CLIC Pre-alignment tolerence

 \pm 10 [µm] over a 200 [m] sliding window (3 σ)

Definition of "Straight Line" for CLIC Pre-Alignment?

CLIC09 Workshop

J. Boerez, S. Guillaume, M. Jones

Trajectory of the Light in Standard

Atmosphere Refraction Field

and Shape of the Earth in Euclidian Space

CLIC09 Workshop

J. Boerez, S. Guillaume, M. Jones

References

Three **References** under study:

• the static water (HLS)	vertical
 • a structure (WDC) • a la 	Touzé ertical

HLS Hydrostatic Leveling System

CLIC09 Workshop

J. Boerez, S. Guillaume, M. Jones

Definition of Gravity Potential

Potential **W(P)** at point **P** is the **Work** needed to bring a unit mass from infinity to **P**

Definition of Gravity Potential

 $\mathbf{W}(x,y,z) = \mathbf{V}(x,y,z) + \mathbf{\Phi}(x,y,z) + \mathbf{Tide}(x,y,z)$

Time independent

Time dependent

Equipotential Surfaces of the Earth's Gravity Field at different Levels

Picture from the Physikalische Geodäsie Skriptum Universität Bonn

surface of static water $\equiv \mathbf{W}(x, y, z) = \mathbf{const}$

CLIC09 Workshop

J. Boerez, S. Guillaume, M. Jones

First Part

$$\mathbf{W}(x,y,z) = \underbrace{\mathbf{V}(x,y,z) + \Phi(x,y,z)}_{\text{Time independent}} - \underbrace{\mathbf{Tide}(x,y,z)}_{\text{Time dependent}}$$

surface of static water $\equiv \mathbf{W}(x, y, z) = \mathbf{const}$

Time Independent Geometry of the Gravity Equipotentials (Geoid)

CLIC09 Workshop

J. Boerez, S. Guillaume, M. Jones

Time Independent Geometry of the Gravity Equipotentials (Geoid)

$$\mathbf{V}(x, y, z) + \mathbf{\Phi}(x, y, z) =$$

$$G \cdot \iiint_{Earth} \frac{1}{r} \rho \cdot dV + \frac{1}{2} \omega^2 r^2 \sin^2 \phi$$

$$\underset{\text{density, approx.}}{\underset{\text{known}}{\text{density, approx.}}} \psi$$

Effect of the Swiss Lakes on Geoid

CLIC09 Workshop

J. Boerez, S. Guillaume, M. Jones

CLIC09 Workshop

J. Boerez, S. Guillaume, M. Jones

Accuracy of the Best Available Geoids

- 1-2 [cm] for wavelengths of 10-100 [km]
- 1-10 [mm] for wavelengths 1-10 [km]

For wavelengths < 1 [km], some questions to be answered :

- Spectrum for very shorts wavelengths ?
- Time Variation ?
- Detection of dangerous anomalies (ampl. > 1-2 μ m for λ < 200 [m])

Measurement process ?

CLIC09 Workshop

Gravity Field's Observables on the Earth

CLIC09 Workshop

Astro-Geodetic Measurements

- 1000 [mm] focal length
- 2184 x 1472 CCD camera
- 6 very accurate tiltmeters
- 1 GPS for precise timing
- 8 motors for automation

$$\label{eq:precision} \begin{split} Precision: < 0.1 ~ [arcsec] = 0.5 ~ [mm/km] \\ 1 ~ point/10[m] \rightarrow \sigma_N \sim 10 \mu m/200 ~ [m] \end{split}$$

Astro-Geodetic Measurements

CLIC09 Workshop

J. Boerez, S. Guillaume, M. Jones

Astro-Geodetic Measurements

CLIC09 Workshop

J. Boerez, S. Guillaume, M. Jones

-11.5

-12

-12.

-3

-3.2

-3.4

-3.6

-3.8

-2.2

-2.4

-2.6

-2.8

6.2

6.15

6.1

6.05

5.9

Astro-Geodetic Measurements

CLIC09 Workshop

J. Boerez, S. Guillaume, M. Jones

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Gravimetric Measurements

Absolute

Relative

CLIC09 Workshop

J. Boerez, S. Guillaume, M. Jones

Test Measurements

Gravimetric Measurements

CLIC09 Workshop

J. Boerez, S. Guillaume, M. Jones

Gravimetric Measurements

CLIC09 Workshop

J. Boerez, S. Guillaume, M. Jones

Second Part

$$\mathbf{W}(x,y,z) = \underbrace{\mathbf{V}(x,y,z) + \mathbf{\Phi}(x,y,z)}_{\text{Time independent}} - \underbrace{\mathbf{Tide}(x,y,z)}_{\text{Time dependent}}$$

surface of static water $\equiv \mathbf{W}(x, y, z) = \mathbf{const}$

Earth Tides

Gravitational Forces

Centripetal Force

$$\vec{\mathbf{F}}_{Tide} = \vec{\mathbf{F}}_{Moon,Sun,\dots} - \vec{\mathbf{F}}_{centripetal}$$

CLIC09 Workshop

J. Boerez, S. Guillaume, M. Jones

Tidal Deformation of the Earth's Crust

Vertical displacement [mm]

- Cyclical signal
- Mainly caused by Moon and Sun
- Maximum amplitude : 0.80 [m] !
- Long period, diurnal and semi-diurnal periods.

CLIC09 Workshop

J. Boerez, S. Guillaume, M. Jones

The HLS measures :

- The real height difference
- The movement of the earth's crust
- The tidal variation in gravity potential
- Others phenomenon...?

 \rightarrow We want to measure the real height difference, so we must remove all factors that can be anticipated

- \bullet Cyclical signal measured by a Hydrostatic Leveling System
- \bullet In this example the 2 HLS sensors are separated from 115m

CLIC09 Workshop

J. Boerez, S. Guillaume, M. Jones

• Corrected by the **general** model of ETERNA (reference software to predict tides). This model uses general parameters for tidal waves.

- Amplitudes reduced :
- Diurnal divided by **3.5**
- Semi-diurnal divided by 2

CLIC09 Workshop

8

• Corrected by a **local model** with **ETERNA**.

• This **local model** is obtained after an **analysis** of **another sample** of data.

It allows to have a better tidal model (specific parameters for tidal waves).

- Amplitudes reduced :
- Diurnal divided by **6**;
- Semi-diurnal divided by **3**

CLIC09 Workshop

J. Boerez, S. Guillaume, M. Jones

How to Establish a Straight Line on the Dynamic Curved Surface of the Earth ?

(for the vertical component with HLS)

Instrumentation :

- resolution and internal accuracy :
- stability with time (drifts) :
- absolute calibration :

now: 0.1, 1-2 [µm] resp. \rightarrow **ok now**: < 5 [µm/month] \rightarrow **objective**: < 1 [µm/month] **now**: 10 [µm] \rightarrow **objective**: 1 [µm]

Reference System (time variable hydro-static shape) :

• static part (geoid) :

- improvement and development of appropriate instruments (Zenith Camera, Autocollimator ...)
- measurement and data processing concept to get the geoid at $\left[\mu m\right]$ accuracy level
- determination of the spectrum for wavelengths < 1 [km]
- determination of the impact of the time variable densities (underground water...)
- time dependent part (earth tides)
 - modelization of cyclical and systematical effects
 - better estimation of tidal parameters with longer time series of data
 - comparison with precise tiltmeters times series

Thanks' for your attention

Julien Boerez Sébastien Guillaume Mark Jones

CLIC09 Workshop

J. Boerez, S. Guillaume, M. Jones

Gravimetric Measurements

CLIC09 Workshop

J. Boerez, S. Guillaume, M. Jones

Summary

• The Global model of ETERNA has almost the same phases and amplitudes as the raw signal :

• The cyclical signal measured by the HLS are the earth tides.

 \circ The residuals still have a cyclical component...

• After an harmonic analysis of a different sample, specific coefficients (for phases and amplitudes) for each wave can be used to predict tides

 \circ The residues are smaller than with global model

 \circ The residuals still have a cyclical component...

Conclusion

- The harmonic analysis allows us to consider some of the effects of the environment over the theoretical tidal model :
 - Cavity forces

(uneven forces acting on a tunnel's wall)

- geological anomalies(local changes in the rock density)
- response of the hydrostatic network
 (waves in the HLS water pipe, orientation of water pipe)
- We know that to obtain a very precise correction for the earth tides, we must analyze a long period of sample data.
- We need a long stable sample (several months) of data from the TT1 or other networks, with little noise and accurate measurements of temperature, humidity and pressure

Conclusion

- This data sample needs to be analyzed to see if it is possible to completely remove the cyclical signal from the measurement data
- Once this analysis is completed it will be possible to determine if the HLS is well modeled solely by the earth tides or not
- If the residual signal after correction is too large to be ignored, another independent measurement is required to provide a control of the real changes in tilt in the TT1 tunnel
- Any discrepancy between the two will indicate if other environmental effects need to be considered in order to completely model an HLS, such as:
 - \circ Underground water table levels
 - o Changes in atmospheric pressure

Next Steps

- Modification of the TT1 network :
 - \circ To have long period data
 - o Install a very accurate inclinometer to compare with HLS results
- Installation of another HLS network on TZ32 :
 - \circ More stable than TT1 (less parasite noise)
 - \circ Access to TT1 can be denied because of SPL project