CEBAF/ILC/CLIC Inverted Gun

<u>M. Poelker</u>, P. Adderley, J. Clark, J. Grames, J. Hansknecht, M. Stutzman, R. Suleiman, K. Surles-Law

Injector Working Group Mtg., October 15, 2009

CEBAF 100kV vent/bake polarized electron source

- Two-Gun Photoinjector One gun providing beam, one "hot" spare
- vent/bake guns 4 days to replace photocathode (can't run beam from one gun while other is baking)

- Activate photocathode inside gun no HV breakdown after 7 full activations (re-bake gun after 7th full activation)
- HV breakdown after just 4 activations when Ti-alloy electrodes are used
- Infrared drive laser light: operate at bandgap, 35ps FWHM, 499MHz
- Extract ~ 2000 Coulombs per year
- Beam current ~ 100uA, laser 0.5mm dia., lifetime: ~ 100C, 1x10⁵ C/cm²

Preparing for Demanding New Experiments

Vent/Bake Guns: need improvement

- Difficult to meet demands of approved high current/high polarization experiments like PRex (100uA) and Qweak (180uA and 1-year duration).
- Our vent/bake guns can provide only ~ 1 week operation at 180uA
- 12 hours to heat/reactivate, four days downtime to replace photocathode

Design Goal for New Gun: One Month Uninterrupted Operation at 250uA (~ 150C charge lifetime and 4 "spots"), One Shift to Replace Photocathode Solution:

(1) LLGun for quick photocathode swap, (2) better vacuum and, (3) higher bias voltage

LL Gun#1 at CEBAF, Installed Summer 2007

LLGun#1 Lifetime at CEBAF

Why only 30C lifetime? Much better performance at Test Cave

"Inverted" Gun **Present Ceramic** Medical x-ray Exposed to field emission technology • Large area • Expensive (~\$50k) We had Lots of metal at HV low level field **New Ceramic** e emission Compact •~\$5k Less metal at HV • No SF6 of N2 2018 New design neg modules

Move away from "conventional" insulator used on most GaAs photoguns today – expensive, months to build, prone to damage from field emission. High gradient locations not related to beam optics

CLIC e-Beam Time Structure

CLIC e-Beam Source Parameters

Parameter	Symbol	Value	
Number Electrons per microbunch	N _e	6 x 10 ⁹	
Number of microbunches	n _b	312	
Width of microbunch	t _b	~ 100 ps	-
Time between microbunches	Δt_{b}	0.5002 ns	laser
Microbunch rep rate	f _b	1999 MHz	a gun
Width of macropulse	T _B	156 ns	
Macropulse repetition rate	F _B	50 Hz	
Charge per micropulse	C _b	0.96 nC	gun
Charge per macropulse	C _B	300 nC	
Average current from gun ($C_B \times F_B$)	I _{ave}	15 uA	
Average current in macropulse (C_B / T_B)	I _B	1.9 A	
Duty Factor w/in macropulse (100ps/667ps)	DF	0.2	pnoto
Peak current of micropulse (I _B / DF)	I _{peak}	9.6 A	

Source Parameter Comparison

Parameter	CEBAF	JLab/FEL	JLab 100mA FEL	SLC	CLIC	ILC
Number electrons/microbunch	8.3 x 10 ⁵	8.3 x 10 ⁸	8.3 x 10 ⁸	1 x 10 ¹¹	6 x 10 ⁹	3 x 10 ¹⁰
Number of microbunches	CW	CW	CW	2	312	3000
Width of microbunch	35 ps	35 ps	35 ps	2 ns	~ 100 ps	~ 1 ns
Time between microbunches	0.667 ns	13 ns	1.3 ns	61.6 ns	0.5002 ns	337 ns
Microbunch rep rate	1497 MHz	75 MHz	750 MHz	16 MHz	1999 MHz	3 MHz
Width of macropulse	-	-	-	64 ns	156 ns	1 ms
Macropulse repetition rate	-	-	-	120 Hz	50 Hz	5 Hz
Charge per micropulse	0.13 pC	0.133 nC	0.133 nC	16 nC	0.96 nC	4.8 nC
Charge per macropulse	-	-	-	32 nC	300 nC	14420 nC
Average current from gun	200uA	10mA	100mA	2 uA	15 uA	72 uA
Average current in macropulse	-	-	-	0.064 A	1.9 A	0.0144 A
Duty Factor: beam ON/beam OFF (during macropulse for pulsed machines)	5x10 ⁻²	2.6x10 ⁻³	2.6x10 ⁻²	2.8x10 ⁻⁷	0.2	3x10 ⁻³
Peak current of micropulse	3.8 mA	3.8 A	3.8 A	8 A	9.6 A	4.8 A
Current density (for spot size below)	1.9 A/cm ²	19 A/cm ²	19 A/cm ²	10 A/cm ²	12.1A/cm^2	6 A/cm ²
Laser Spot Size	0.05 cm	0.5 cm	0.5 cm	1 cm	1 cm	1 cm

Existing facilities

Proposed facilities

Increase Gun Voltage: Why?

- Reduce space-charge-induced emittance growth, maintain smaller transverse beam profile and short bunchlength
- Address current density limitation due to Child's Law (not an issue)
- (Maybe?) Reduce problems associated with surface charge limit (i.e., QE reduction at high laser power)
- (Maybe?) Prolong Operating Lifetime

Biggest obstacle: Field emission, HV breakdown... which lead to Photocathode Death Historically, Labs have had difficulty operating DC high voltage guns above ~ 100kV and with field gradient > 5MV/m

Increase Gun Voltage: Why?

- Reduce space-charge-induced emittance growth, maintain small transverse beam profile and short bunchlength
 - Make a nice beam, build a rugged and reliable photoinjector (i.e., not complicated)
- (Maybe?) Reduce problems associated with surface charge limit (i.e., QE reduction at high laser power)
 - Mostly, need to have very good vacuum and a good load lock to quickly replace photocathodes

Biggest obstacle: Field emission, HV breakdown... which lead to Photocathode Death Historically, Labs have had difficulty operating DC high voltage guns above ~ 100kV and with field gradient > 5MV/m

Benchmarking PARMELA Simulation Results Against Beam-Based Measurements at CEBAF/Jefferson Lab – work of Ashwini Jayaprakash, JLab

Message: Beam quality, including transmission, improves at higher gun voltage

Space Charge Limit (my old slide)

Child's Law

$$j_0 = \mathbf{Q}.33 \times 10^{-6} \, \mathbf{y}_0^{3/2} \, / \, d^2$$

V (kV)	<i>j₀</i> (A/cm²)		
100	7	K	Comparable to CLIC
140	14		current density
200	23		
350	53		

Assume 3cm cathode/anode gap CLIC peak current ~ 10A and Current density j = 6 A/cm² for 1cm diameter laser

Suggests CLIC current density comparable to Child's Law current limit.... but not to worry.....

Space Charge Limit

Child's Law (1D):
$$j_1 = \mathbf{Q}.33 \times 10^{-6} \mathbf{y}^{3/2}/d^2$$

Child's Law (2D) (PRL **87**, 278301): $j_2 \cong j_1 \left(1 + \frac{1}{4} \frac{d}{r} \right)$

Short Pulse (PRL 98, 164802):

$$j_{SCL} = j_2 \left(2 \frac{1 - \sqrt{1 - 3X_{CL}^2 / 4}}{X_{CL}^3} \right),$$
$$X_{CL} = \frac{t_b}{\tau}$$

- V Gun voltage
- d Cathode/anode gap (3 cm)
- *r* Laser spot size (1 cm = 2r)
- t_b microbunch length (100 ps)
- Gap transit time (0.48 ns @ 100 kV)

ILC with long microbunch... won't reap "short pulse" benefit

Space Charge Limit – Not an Issue

1D SCL does not apply (i.e. we don't have infinite charge plane) CLIC conditions – with finite beam size 2D, and short pulses - push Child's Current Limit higher.....

Surface Charge Limit

Peak to peak spacing 2.8ns, bunchwidth 0.7ns, Charge: 1nC/bunch

Heavily doped surface: viable solution?

5.5 A/cm2 @ SLAC for 780 nm, 75 ns pulse 9.7 A/cm2 @ Nagoya for 780 nm, 30 ps

CLIC current density comparable to these values...something to worry about. Need to identify factors that lead to SCL, Will higher voltage help?

Improve Lifetime with Higher Bias Voltage?

Field Emission – Most Important Issue

- Flat electrodes and small gaps not very useful
- Want to keep gun dimensions about the same – suggests our 200kV gun needs "quiet" electrodes to 10MV/m

Electropolished Stainless Steel

- Results similar to diamondpaste polishing: limiting gradient 5MV/m
- Considerable time saving
- Perhaps better results if we start with smoother surface

Single Crystal Niobium:

- Capable of operation at higher voltage and gradient
- Buffer chemical polish (BCP) much easier than diamond-paste-polish

Replace conventional ceramic insulator with "Inverted" insulator: no SF6 and no HV breakdown outside chamber

Single Crystal Niobium:

- Capable of operation at higher voltage
 and gradient
- Buffer chemical polish (BCP) much easier than diamond-paste-polish

Conventional geometry: cathode electrode mounted on metal support structure Replace conventional ceramic insulator with "Inverted" insulator: no SF6 and no HV breakdown outside chamber

Inverted Gun at voltage > 100kV?

Presently limited to 150kV at CEBAF (system compatibility, e.g., pss, blue tank): 150 kV would provide "safe" gradient and likely markedly better transmission, And still get two Wien beamline...

High Temperature Bake to Reduce Outgassing Rate

- As much "thin-wall" material as possible
- 316LN (L= low carbon, N= nitrogen added for hard knife edges)
- Manufactured and electropolished by NorCal
- 400C bakeout for 9 days, under vacuum
- Pumped by oil-free turbo, then added ion pump, while monitoring "effluent" with RGA
- At 9th day, vacuum still improving by ~15% per 24 hours
- RGA shows H2, methane, CO and HCl (from electropolishing)
- Rate of Rise method, with spinning rotor gauge, outgassing rate 10⁻¹³TL/scm², one order of magnitude improvement
- Vented and remeasured good rate, on test chamber
- Now working to de-gas internal components...

- Inverted Gun installed at CEBAF, operational since July 23, 2009
- Happy at 100kV, conditioned to 110kV, briefly went to 125kV
- Opportunity at CEBAF for operation > 100kV
- Lifetime ~ 75C at 130uA ave. current
- Aggressive commissioning of 2nd InvGun at Test Cave. Should be under vacuum - with Nb electrode - by end October

To-do List for CLIC, ILC and JLab

- Demonstrate Higher Voltage > 100kV with new inverted gun
 - 200kV for CEBAF, 350kV for ILC
 - Field emission measurements, materials and polishing techniques
 - New gun design if necessary: reduce gradient where possible, symmetric design
- Cathode/Anode Design for large laser beam
 - Uniform emittance across beam profile
 - No beam loss
- Improve Vacuum
 - NEG/ion pump limitations
 - Gauges at -13Torr
 - Cryopumping

Work in-progress

Cathode/Anode Design

- We learned at CEBAF that it is extremely important to manage ALL of the extracted beam
 - Anodized edge: beam from outside 5 mm active area can hit beampipe walls, degrade vacuum, reduce operating lifetime

- ILC/CLIC requires large laser beam to reduce current density and overcome space and surface charge problems
- Need a cathode/anode design that ensures uniform emittance across beam profile. A beam that can be easily managed/transported, with *ZERO* beam loss.

Emittance vs. radial distance from electrostatic center Choosing the best cathode focusing angle....

Do Ion Pumps Limit Ultimate Pressure?

- We build guns and test stands and always measure pressure higher than expected: ~ 3e-12 to 8e-12Torr. Why?
- Pinched-off and baked ion pumps have current 0.1nA or lower. Does this mean ion pump in -12Torr range, or OFF?
- Do NEG pumps quit pumping at low pressure?
- Do gauges lie?

Vacuum Studies: Ion Pump Limitation?

Used old gun as test bed: "flapper" valve installed between gun and ion pump

- Conventional wisdom: Ion pumps required for gasses not pumped by NEGs – but might be limiting our ultimate pressure.
- Beam tests so far inconclusive
- Stutzman with test stand to explore these issues.....

BACK-UP SLIDES

Key Features:

- Smaller surface area
- Electropolished and vacuum fired to limit outgassing
- NEG-coated
- Never vented
- Multiple pucks (8 hours to heat/activate new sample)
- Suitcase for installing new photocathodes (one day to replace all pucks)
- Mask to limit active area, no more anodizing

New CEBAF load-locked gun

Lifetime with Large/Small Laser Spots

"Further Measurements of Photocathode Operational Lifetime at Beam Current > 1mA using an Improved 100 kV DC High Voltage_GaAs Photogun," J. Grames, et al., Proceedings Polarized Electron Source Workshop, SPIN06, Tokyo, Japan

1mA at High Polarization*

Parameter	Value	* Note: did not actually
Laser Rep Rate	499 MHz	measure polarization
Laser Pulselength	30 ps	High Initial QE
Wavelength	780 nm	
Laser Spot Size	450 mm	2600 1.039
Current	1 mA	2400 .739 ق
Duration	8.25 hr	→ 2200 → .440
Charge	30.3 C	1800
Lifetime	210 C	
#How long at 1mA?	10.5 days	X Stage
* prediction with 10W laser		run II 070220 uhv01 volts (0, 1e-09) uhv02 volts (0, 5e-09) uhv03 volts (0, 5e-09) uhv03 volts (0, 5e-09) uhv03 volts (0, 5e-09) uhv03 volts (0, 5e-09) uhv03 volts (0, 5e-09) uhv03 volts (0, 5e-09) uhv03 volts (0, 5e-09) uhv03 volts (0, 5e-09) uhv06 volts (0, 5e-09) uhv07 volts (0, 5e-09) uhv07 volts (0, 5e-09) uhv06 volts (0, 5e-09) uhv07 volts (0, 5e-09) uhv07 volts (0, 5e-09) uhv07 volts (0, 5e-09) uhv06 volts (0, 5e-09) uhv07 volts (0, 5e-09) uhv07 volts (0, 5e-09) uhv07 volts (0, 5e-09) uhv07 volts (0, 2e-09) uhv07 volts (0, 2e-09) uhv06 volts (0, 2e-09) uhv07 volts (0, 2e-09) uhv07 volts (0, 2e-09) uhv07 volts (0, 2e, 0) uhv07 volts (0, 2e, 0) volts (0, 2e, 0)

(Hours)

Feb 23, 07

ILC e- Beam Time Structure

ILC e-Beam Source Parameters

Parameter	Symbol	Value	
Number Electrons per microbunch	N _e	3 x 10 ¹⁰	
Number of microbunches	n _b	3000	
Width of microbunch	t _b	~ 1 ns	
Time between microbunches	Δt_{b}	337 ns	
Microbunch rep rate	f_b	3 MHz	laser
Width of macropulse	T _B	1 ms	
Macropulse repetition rate	F _B	5 Hz	
Charge per micropulse	C _b	4.8 nC	gun
Charge per macropulse	C _B	14420 nC	
Average current from gun ($C_B \times F_B$)	I _{ave}	72 uA	vacuum
Average current macropulse (C_B / T_B)	I _B	14.4 mA	, ab at a
Duty Factor within macropulse (1ns/337ns)	DF	3x10 ⁻³	othode
Peak current of micropulse (I _B / DF)	I _{peak}	4.8 A	

Comparison between different bunch charge

Cathode Angle [deg]