

CLIC Main Beam Injector Complex review

Louis Rinolfi

for the CLIC Collaboration

F. Antoniou, X. Artru, I. Bailey, A. Brachmann, E. Bulyak, R. Chehab, M. Chevallier, J. Clarke, O. Dadoun, S. Doebert, E. Eroglu, A. Ferrari, W. Gai, P. Gladkikh, T. Kamitani, M. Kuriki, A. Latina, W. Liu, T. Maruyama, Y. Papaphilippou, M. Poelker, F. Poirier, T. Omori, I. Pogorelski, D. Schulte, J. Sheppard, V. Strakhovenko, F. Stulle, T. Takahashi, F. Tecker, J. Urakawa, A. Variola, A. Vivoli, V. Yakimenko, L. Zang, F. Zhou, F. Zimmermann

Collaborations

for the CLIC Main Beam Generation studies

Alphabetic order for countries

Countries	Institutes	Collaborators	Subject	
France	LAL	I. Chaikovska, O. Dadoun, F. Poirier, A. Variola	e ⁺ studies	
France	IPNL	X. Artru, R. Chehab, M. Chevallier, V. Stakhovenko	Channeling studies	
Germany	FZR Rossendorf	J. Teichert	Compton sources	
Japan	Hiroshima Uni.	M. Kuriki, T. Takahashi	Experiments at KEKB	
Japan	KEK	T. Kamitani, T. Omori, J. Urakawa	e ⁺ studies	
Turkey	Uludag University	E. Eroglu, A. Kenan Çiftçi, E. Pilicer, I.Tapan	FLUKA simulations	
Ukraine	Kharkov Institute	E. Bulyak, P. Gladkikh	Compton Rings	
United Kingdom	Cockcroft Institute	I. Bailey, J. Clarke, L. Zang	Undulator e ⁺ studies	
USA	ANL	W. Gai, W. Liu	Undulator e ⁺ studies	
USA	BNL	I. Pogorelski, V. Yakimenko	Compton Linac	
USA	JLAB	M.Poelker	DC gun for polarized e-	
USA	SLAC	A. Brachmann, T. Maryama, J. Sheppard, F. Zhou	Polarized e- sources	

CLIC Main Beams generation: 4 studies are ongoing to produce e⁺/e⁻ with the requested parameters at the entrance of the Pre-Damping Ring (PDR):

1) Baseline configuration:

CLIC

3 TeV (c.m.) - polarized electrons ($5x10^9$ e⁻/bunch) and unpolarized positrons ($7.6x10^9$ e⁺/bunch). Pulse of 156 ns long with 312 bunches

2) Double charge configuration:

500 GeV (c.m.) - polarized electrons ($10x10^9$ e⁻/bunch) and unpolarized positrons ($15.2x10^9$ e⁺/bunch) with same pulse length as above

3) Polarized positron configuration:

3 TeV (c.m.) - polarized e⁻ and e⁺ with same parameters as for the baseline

4) Low energy configuration (< 3 TeV):

4.1) Polarized e⁻ and unpolarized e⁺ (as the base line) but with the highest repetition frequency
4.2) Polarized e⁻ and unpolarized e⁺ with half the baseline charge but 800 bunches

15th October 2009

L. Rinolfi

15th October 2009

15th October 2009

L. Rinolfi

Polarized electrons

ILC and CLIC e⁻ sources

Parameters	ILC	CLIC (0.5 TeV)	CLIC (3 TeV)
Electrons/microbunch	3×10 ¹⁰	1×10 ¹⁰	0.6×10 ¹⁰
Charge / microbunch	4.8 nC	1.6 nC	1 nC
Number of microbunches	2625	354	312
Total charge per pulse	79×10 ¹²	3.5×10 ¹²	1.9×10 ¹²
Width of Microbunch	1 ns	~ 0.1 ns	~ 0.1 ns
Time between microbunches	360 ns	0.5002 ns	0.5002 ns
Width of Macropulse	~ 1 ms	177 ns	156 ns
Macropulse repetition rate	5 Hz	50 Hz	50 Hz
Charge per macropulse	~12600 nC	566 nC	300 nC
Average current from gun	63 μ Α	28 μ Α	15 μ Α
Average current in macropulse	0.013	3.2	1.9
Peak current of microbunch	4.8 A	16 A	9.6 A
Current density (1 cm radius)	1.5 A/cm ²	5 A/cm ²	3 A/cm ²
Polarization	>80%	>80%	>80%

CLIC 09 workshop

Superlattice GaAs: Layers of GaAs on GaAsP

No strain relaxation QE ~ 1% Pol ~ 85% @ 780 nm

Photocathodes for ILC and CLIC

First successful superlattice by KEK/Nagoya group.

T. Omori et al, Phys Rev Lett 67 (1991) pp3294-3297.

Large band-gap photocathode gave a high current. First GaAs-GaAsP photocathode with superlattice structure, strain, modulation doping by KEK/Nagoya group.

T. Nakanishi at al, NIM, A455, pp.109-112 (2000)

Developments at SLAC.

"Systematic study of polarized electron emission from strained GaAs/GaAs superlattice photocathodes" T. Maruyama et al., Applied Physics Letter, Vol 85, N 13, 2004

Developments at JLAB.

"Lifetime Measurements of High Polarization Strained Superlattice Gallium Arsenide at Beam Current > 1 mA Using a New 100 kV Load Lock Photogun", J. Grames et al., Particle Accelerator Conference, Albuquerque, NM, June 25-29, 2007

See J. Sheppard talk and M. Poelker talk

Polarized e⁻ produced at SLAC

See J. Sheppard talk

The total charge produced is a:

factor 3 above the CLIC requirement for 0.5 TeV and

factor 5 above the CLIC requirements for 3 TeV

QE ~ 0.5 - 0.7 %

The measured polarization is ~ 82 %

CLIC polarized e⁻ source challenges

Reliable load locked gun

High voltage 100 kV - 350 kV

CLIC

Ultra-high vacuum requirments

Cathode/anode optics

=> No field emission

=> range of 10⁻¹¹ Torr

=> challenge for uniform focusing properties

Photocathode:

Gun:

Production of the full current with space charge and surface charge limits High polarization: 80 % - 90% => Measurements and accuracy High Quantum Efficiency: 0.2 - 1 % => Photo-cathodes preparation techniques Long life time

Laser:

Laser frequency:2 GHz or cwPulse length:0.1 to 800 nsPulse energy:> 1 mJ

Unpolarized positrons

Flux of e⁺

	SLC	CLIC	ILC	LHeC
e⁺/ bunch	3.5 × 10 ¹⁰	0.67×10 ¹⁰	2 × 10 ¹⁰	1.5×10 ¹⁰
Bunches / macropulse	1	312	2625	20833
Macropulse Rep. Rate.	120	50	5	10
e⁺ / second	0.042 × 10 ¹⁴	1 × 10 ¹⁴	2.6 x 10 ¹⁴	31 x 10 ¹⁴

CLIC Pre-Damping Ring acceptance

	e+ to the PDR	See F. Antoniou talk	
	Simulations CLIC Notes 465 and 737	Vivoli simulations 2008	
Energy	200 MeV, 1.98 GeV and 2.4 GeV	200 MeV	
Number of particles	6.8 × 10 ⁹ 6.4 × 10 ⁹		
Bunch length (rms)	5 mm	9 mm	
Energy spread (rms)	2.7 %	1 %	
Normalized rms emittances	9300 mm.mrad	7000 mm.mrad	

Pre-Damping Ring design is based on these values

PDR geometrical acceptance:

 $H = V = 6 \sigma$

See O. Dadoun talk and T. Takahashi talk

R. Chehab and A. Variola (LAL) have proposed the concept of hybrid targets

> First target is a W crystal oriented along <111> axis where channeling process occurs.

> Second target is W amorphous, a few meters downstream, receiving only photons

CLIC Note : « Study of a hybrid e⁺ source using channeling for CLIC »

First tests with beam have been already performed at KEKB

CLIC Pre-Injector Linac for e+

See A. Vivoli talk and F. Poirier talk

CLIC 09 workshop

Parameter	Unit	CLIC	
Primary e ⁻ Beam			
Energy	GeV	5	
N e ⁻ /bunch	109	7.5	
N bunches / pulse	-	312	
N e ⁻ / pulse	1012	2.34	
Pulse length	ns	156	
Repetition frequency	Hz	50	
Beam power	kW	94	
Beam radius (rms)	mm	2.5	
Bunch length (rms)	mm	0.3	

Electron beam parameters on the crystal target

With a yield of $0.9 \text{ e}^+/\text{e}^-$ at 200 MeV and $6.7 \times 10^9 \text{ e}^+$ /bunch needed at 200 MeV, the requested charge is $7.5 \times 10^9 \text{ e}^-$ /bunch on the target

LAL simulations for the Yield and the Peak Energy Deposition Density in the amorphous target are based on these values

See O. Dadoun talk

15th October 2009

Target issues for CLIC lower energies

 $CLIC_{Upper limit for the Peak Energy Deposition Density (PEDD) = 35 J / g$

CLIC machine at 3 TeV but working at lower energies (0.5 < E < 3 TeV)	Yield (e⁺/e⁻) after the AMD	E _{tot} (J/train)	P (kW)	PEDD (J/g)
Base line for e ⁺ 312 bunches 7.5x10 ⁹ e-/bunch 50 Hz	2	196	9.8	22
Change repetition frequency for e ⁺ 312 bunches 7.5x10 ⁹ e-/bunch 68 Hz	2	267	13.3	30
Change the number of bunches for e ⁺ 800 bunches 3.75×10 ⁹ e-/bunch 50 Hz	2	250	12.5	28

Polarized positrons

CLIC based Compton Ring

Compton Ring performance

E. Bulyak / NSC KIPT

Number of $e^{-} = 312 \times 6.2 \times 10^{9} = 1.93 \times 10^{12}$ in the ring

Laser pulse: E = 1.164 eV r = 0.005 mml = 0.9 mm

 $1 \text{ cycle} = 15\ 000 \text{ turns} = > T = 156 \text{ ns } x\ 15\ 000 = 2.3 \text{ ms}$

Laser on during 2500 turns

Photon yield = 0.063 photons / e- / turn (simulation)

Photon flux: 1.33×10^{16} photons / s

CLIC Compton ERL

CLIC 09 workshop

0.45

0.4

0.35

0.3

0.25

0.2

300

Polarisation

15th October 2009

250

200

For the CLIC Injector Linac, a design exits based on 2007 parameters.

"Design study of the CLIC Injector and Booster linacs with the 2007 beam parameters" by A. Ferrari, A. Latina, L. Rinolfi, CLIC Note 737, May 2008

For the CLIC Spin rotators, nothing has been done yet.

Only study for ILC spin rotators exits. Initially foreseen at 5 GeV and now a new proposal has been made to implement these devices at 400 MeV.

K. Moffeit / SLAC

At "2009 Linear Collider workshop" Albuquerque, September 2009

See S. Riemann talk about polarimetry

- 1) A single hybrid targets station or several stations to cover all the CLIC needs
- 2) Devices for Undulator scheme (Helical undulator, collimators, dumps,...)
- 3) Devices for Compton schemes (Optical cavities at IP, powerful laser systems,...)
- 4) Targets issues (Heat load dynamics, beam energy deposition, shock waves, breakdown limits, activation,)
- 5) Adiabatic Matching Device (AMD)
- 6) Capture sections (Transport and collimation of large emittances, high beam loading)
- 7) Trade off between yield, polarization and emittances
- 8) Design and implementation of the spin rotators
- 9) Polarization issues (Analyze systematic errors of polarization measurements)
- 10) Efficient use of existing codes (EGS4, FLUKA, Geant4, PPS-Sim, Parmela, ...)
- 11) Integration issues for the target station (remote handling in radioactive area)
- 12) Radioactivity issues
- 13)

See J. Clarke talk for ILC/CLIC common issues

Summary

For polarized e⁻, the requested performance for a DC gun have been obtained. Complete simulations up to the PDR remain to be done. R&D for the laser system (stability,...) to be investigated.

➢ For unpolarized e⁺ and for the baseline (3 TeV), the hybrid target configuration, the capture section and the transport up to the PDR provide a solution with a single target station.
The double charge (0.5 TeV) requires more studies and investigations.

➢ For polarized positrons, several big challenges remain to be investigated for all process (Compton ring or linac, ERL, Undulator).

> For the spin rotators, studies remain to be done.

A big THANK YOU to all collaborators contributing to these CLIC studies