CLIC Post-Collision Line Review

Edda Gschwendtner, CERN

for the Post-Collision Working Group

Rob Appleby (CERN & Cockcroft Institute) Konrad Elsener (CERN) Arnaud Ferrari (Uppsala University) Mike Salt (Cockcroft Institute) Volker Ziemann (Uppsala University)

Outline

- Introduction
- Design Considerations
- Present Design
- Critical Issues
- Beam Diagnostics
- Summary

Post-Collision Line

Introduction

Parameter	CLIC
Max. Center of Mass energy [GeV]	3000
Luminosity L _{99%} [cm ⁻² sec ⁻¹]	2 10 ³⁴
Bunch frequency [Hz]	50
Bunch spacing [ns]	0.5
# Particles per bunch	3.7 10 ⁹
# Bunches per pulse	312
Bunch train length [μs]	0.156
Beam power per beam [MW]	14
Bunch length [µm]	44
Crossing angle [mrad]	20
Core beam size at IP horiz. σ_x^* [nm]	45
Core beam size at IP vertic. σ_y^* [nm]	0.9

Some Numbers

- e⁺e⁻ collision creates disrupted beam
 - Huge energy spread, large x,y divergence in outgoing beam
 - \rightarrow total power of ~10MW
- High power divergent beamstrahlung photons
 - 2.2 photons/incoming e+e- \rightarrow 2.5 E12 photons/bunch train → total power of ~4MW
 - Coherent e+e- pairs
 - 5E8 e+e- pairs/bunchX
 - → 170kW opposite charge
- Incoherent e+e- pairs ٠
 - 4.4E5 e+e- pairs/bunchX → 78 W

disrupted beam at interaction point

Design Considerations

- Safely transport outgoing electrons and photons from IP to the main dumps
 - Minimize beam loss from strong over-focusing, dispersion of low energy electrons/positrons
 - Protect magnets and diagnostic devices
 - Design of main dump (window, dump vessel, ...) with necessary safety margin
 - Minimize background from post collision line to the experiments
 - Stay clear of the incoming beam
- Diagnostics (luminosity monitoring)

Conceptual Design

Baseline: vertical chicane with 2x4 dipoles

- 1. Separation by dipole magnets of the disrupted beam, beamstrahlung photons and particles with opposite sign from coherent pairs, from low energy tails
 - \rightarrow Short line to prevent the transverse beam size from growing too much
 - → Intermediate dumps and collimator systems
- 2. Back-bending region with dipoles to direct the beam onto the final dump
 - \rightarrow Long line allowing non-colliding beam to grow to acceptable size

E. Gschwendtner, CERN

Separation Dipoles, Masks

Present Conceptual Design

Critical Issues

Main Dump

Baseline:

- ILC style water dump (18MW)
- Issues:
 - Window design
 - Pressure on dump walls, window...
- Blow up of the beam
 - Sweeping magnets
 - Defocusing
- Tail catcher along post-collision line

Next steps:

Extend geometry: add magnets, absorbers, intermediate dump, etc..

- → Photon background
- → Neutron background

Talk by Mike Salt, We 14:30, WG1+WG3

Backscattered Photons

Frame Magnet

Beam Diagnostics

(Large number of coherent pairs imposes less ambitious diagnostics (w.r.t. ILC) in the post-collision lines:

no energy measurement, no polarimeter -both need to be in BDS)

Crucial item: luminosity monitors

→ Experiments measure luminosity (slowly!)

 \rightarrow Need fast signal for monitoring and correcting beam

- beam-beam offset: effect on beamstrahlung photons and coherent pairs → related to luminosity!
- Monitoring per ≤ bunch train
- Measure relative changes

Some ideas on luminosity monitoring:

→ Volker Ziemann, EUROTeV-Report-2008-016

Luminosity Monitoring: µ+µ- pair production

- Converter in main dump → muons
 - \rightarrow install detector behind dump
 - With a Cherenkov detector: 2 E5 Cherenkov photons/bunch

EUROTeV-Report-2008-016 .

\rightarrow To be studied in more detail: background, converter, detector, etc..

E. Gschwendtner, CERN

Summary

Conceptual design of the post-collision line exists

- We are in the process of forming a working group (project • associate, PhD student...) concentrating on issues such as:
 - Calculations of Background to IP
 - Photons •
 - neutrons ٠
 - Beam diagnostics
 - Luminosity
 - Background to monitors •
- More work needs to done on •
 - Beam Dump
 - Type, entrance window
 - Background from dump
 - Large beam spot size at dump
 - Sweeping magnets or defocusing •
- ing dimmediations from ILC experts on Post-collision matering and the second state of the second sec >contributions from it c experts on rost-coilision line, dump design, polarimetry are most welcome! Collimator and intermediate dump design
 - Magnet design
 - Radiation in post-collision line

Extra slides

