Novel ideas about a magnet yoke at a CLIC detector

14.Oct. 2009

Flashback to Lol's of ILC detectors

SiD	4th concept	ILD
B = 5 T	B = 3.5 T	B = 3.5 T
Outer Radius = 6 m	Outer Radius = 5.6m	Outer Radius = 7m
Zmax = 5.6 m	Zmax = 6.3 m	Zmax = 6.65 m
Total mass = 9840 t	Total mass = 760 t	Total mass = 15200 t

Stability, L* and Self-shielding

	ILC	CLIC
L*	3.5 m	3.5 m
Stability	5 nm	0.5 nm
Self-shielding	Magn. + Radiat.	Magn. + Radiat.

ILD Endcap thickness 2.56 meter!

Stability is an issue! (H.Yamaoka, KEK)

Vibration properties of the ILD QD0 support system has been studied.

Natural frequency

<u>Courtesy</u>

<u>KEK</u>

Hiroshi Yamaoka,

Results: Responded amplitude at each resonance. @ KEK-ATF 0.1Hz 1e-5m/s² 6e-4m/s² 1Hz 4.5Hz 7.9Hz 6e-4m/s² 10Hz 1.5nm 240nm 100Hz 2e-3m/s² 13.6Hz 10.4Hz 0.3nm 50nm 12

By far, the length of the QD0 support is the important parameter

It goes with L³ for stiffness and eigenfrequency

Try to reduce length

14.Oct. 2009

What else is possible?

- Abandoning the opening of the detector on IP
- Extend tunnel as a solid basis for QD0 as far as possible into the cavern
- Tunnel is at least ~ 10 times more stable than detector (A. Seryi, CLIC08)
- see also talks of A. Hervé and A. Jeremie about vibration)

In practice:

• Avoid that:

Positive side-effect

Small MDI zone = Clear boundaries

= Clear responsibilities

= Good results

14.Oct. 2009

....in other words

Small L* - short detector

Stability - long tunnel

Shielding - massive

14.Oct. 2009

Magnetic field type "ILD"

14.Oct. 2009

Magnetic field axial component Bz

14.Oct. 2009

CLIC_09 Workshop H.Gerwig/ A. Gaddi/ N.Siegrist

Could one get rid off the endcap in order to reduce the lever arm of the QD0 support ?

14.Oct. 2009

Yes, we can, but

14.Oct. 2009

... field leaks due to missing iron

14.Oct. 2009

CLIC_09 Workshop H.Gerwig/ A. Gaddi/ N.Siegrist

Why not Hybrid? Thinner endcap + coils

14.Oct. 2009

Good Field quality and 1.2m shorter endcap!

14.Oct. 2009

CLIC_09 Workshop H.Gerwig/ A. Gaddi/ N.Siegrist

Comparison of field quality

	ILD	Air 'endcap'	Hybrid
IP	4.050 T	3.210 T	3.875 T
1m	3.925 T	3.105 T	3.775 T
2m	3.800 T	2.730 T	3.550 T
3m	3.375 T	2.125 T	3.125 T
Compar.	100%	~75%	~95%

Additional complication Antisolenoid for QD0

CLIC_09 Workshop H.Gerwig/ A. Gaddi/ N.Siegrist

14.Oct. 2009

CLIC_09 Workshop H.Gerwig/ A. Gaddi/ N.Siegrist

How would then this look like ?

14.Oct. 2009

Side Cut of detector on IP

14.Oct. 2009

14.Oct. 2009

Zoom on chicane shielding retracted

14.Oct. 2009

Detector seen from top on IP

Massive tunnel part Serves as shielding ~15cm gap between endcap coils and Tunnel wall is closed with the chicane ring shielding

Detector in garage position

O

Conclusion I

- In order to have a chance to satisfy the ambitious detector requirements of CLIC a combination of engineering and new general approaches is necessary
- Sharing the same cavern needs new thinking in terms of access, power, safety, stray-field etc.
- There is no reason to keep still an opening of the detector on IP when sitting on a movable platform

- Warm coils on the endcap could reduce its thickness by 50%, losing only 5% of field
- The antisolenoid could sit on the endcap thus no additional vibrations for QD0
- More precise physics input is needed to come to a real detector layout.

