Review of the Budker Institute activity for CLIC damping ring design

E.Levichev, P.Pimenov, S.Sinyatkin, D.Shatilov, P.Vobly, <u>K.Zolotarev</u> Budker Institute for Nuclear Physics, Novosibirsk, Russia

Main issues

- SC wiggler design fabrication and tests
- Proposals for DR structure
- Proposal for SR absorber system and results of simulation
- Some results of some simulation of the beam dynamics in case of fast damping

Superconductive wiggler design

Main parameters of the wiggler

SC cable and coil parameters

Cable type	NbTi/Cu ~ 1.5/1
Cable diameter, mm	0.85
Insulated diameter, mm	0.91-0.92
Design current – I _d , A (at 6 T)	660
Ratio I _d /I _c , %	85
Coil net size at the poles, mm	14.6×20.5
Number of turns in the whole (main) coil	357 (23 layers per 16-15 turns)
Number of turns in the three ends coils	44, 179, 310

Internal Cu liner with LN temperature protects LHe elements from SR

A cryogenic cooler SUMITOMO SRDK 408S2 permits evacuate up to 50 W power from 60 K liner.

Field calculations

0	20*/ 20*1	22*9 26*4	34*9 51*	57x4 55x6	44x4 24.4	11.4 5.08
9-	15*4 17*4	19*9 23*	31*8 42* 5 27*0	3 56x2 56x	49x0 32.4	14.1 6.07
	12*9 15*2	2 17 * 6 21 * 4	24*8 36*	1 53×2	51X2 38X	14.8 6.3
	10*7 12*	9 15*7 18*2	2 22*7 31* 28*	4 45*1 5/2 9 40*4 57×	(2 52x8 40x 1 == 2 43x	17.0 8.4
	8*53	12*2 15*1	20*4 26*I	· 40*4) 35*5 56x3	55x6 47x2	21.1 9.63
	6*68 8*78	10*7 12*7	18*4 23*7	32*9 53*7	56x/ 50x6	24.1 10.1
	4*95 7*14	9*41 12*	1/#2 22#	9 30*1 49 *	57x2 51x5	38×1 14 2
	3*50 5*85	8*44 11*8	15*7 19*0	5 28*1 44*6 9 28*1 42*6	57x3 51x5	37x6 14.2
	2*52 **/*	7*64 11*1	15*3 19*2	25*6 38*8	57x0 53x7	40x9 15
	2*58 5*19	/ /*52 11*4 5 7#04 11*1	15*1 18*1	9 24*7 35*8	56x1 55x0	43x1 17.7
6-	3*76 6*43	3 8*68 11*6	15*1 19*2	23*6 35*1	54x9 54x9	43x0 18.1
-	5*/3 7*35	10*0 12*2	15*4 18*6	23*6 32*7	53#4 55x8	45x2 20.6
	/*54 9*22	10*9 13*4	16*2 19*3	24*1 32*9	53*7 55x8	44x7 20.8
	12*1	12*7 14*3	16*8 19*7	24*3 33*5	55*1 cc7	44x3 20.5
	14*9	14*8 15*7	10×4 20×9	25*3 32*8	55*7 55×7	43x9 20.2
	17*8 10*3	17*1 17*0	21*9 24*3	26*8 36*2	57*1 56x1	45×0
	21*7 22*4	20*0 -0 -	24*6 26*8	28*9	58*6 55x5	43×6 21 2
	26*2 28*4	23*0 28*8 27*5	28 * 6 30 * 5	35*8 43*4	€0x2 53x9	40×1 40 0
	32*7 35*6	36*0 33*8	34*6 36*0	49*6	60x0 52x4	35-0 12 4
2-	42*0 46*4	46*7 43*0	43*7 44*3	46*5 59x6	56x2 48x6	31/25 11 6
5	59*4 50x9	51x1 60*2	<u>59*6 60*3</u>	58x2 50x2	53x6 45x5	24.0 9.56
	50x4 51x0) 51x2 51x1	51x8 53x/	57x1 50x0	46m4 36mF	19.3 8.58
	52x0 52x3	52x3 52x3	52x8 54x0	54x3 50x2	42x0 31x8	15.6 6.64
	52x0 51x6	51x7 52x2	49m2 49m3	50x5 45x3	37x2 25.1	12.8 5.60
	49x1	. 49x1 46x0	4582	45x5 39x3	32x0 17.4	9.29 4.22
	40×7 45×9	45x6 40x0	4129 4026	4185 29.3	19.0 10.5	6.65 3.14
	47.4	-43.6	1000	31.4 20 8	14.7 g ng	1.20 2.30

Wiggler fabrication

Active quench protected system

Wiggler testing

уузить данные! Печать Перекодировка! Выход!

Conclusions on the tests

- The training was too long. The 420 A current was achieved instead 661 A of the design current.
- The most quantity of quenches, 33 out of 40, was in one the "B" half of the wiggler.
- The protection system worked well. The maximal voltage on the first quenched coil was about 100 V.
- The significant difference of the quantity of quenches between the two halves. One of the reasons of this may be the different epoxy impregnation: difference in epoxy mixtures, quantity of powder, etc.
- The use GFP spacers, of those thermal expansion coefficient is up to 6 times larger than for the iron, may only impair the imperfect epoxy impregnation. But we don't see the clear evidence that the reason of degradation lays on the spacers.

Proposals

- First approach is to make short wiggler prototype without use of the GFP elements. The manufacturing of this design will start in close days. The SC cable for this short prototype is available yet.
- The use of another type of epoxy could be very desirable. The Araldite MY740 is probably not perfect for our tasks.
- Another one is to make another test run (runs) to understand the quench behavior and to make magnet measurements.

DR lattice design

Arc and FODO cells structures

Arc cell structures

The structures for belo-bit (original and proposals)						
Structure version	Original	V04	V06			
Energy E [GeV]	2.424					
Circumference P [m]	365.21	534	493.05			
Emittance [nm*rad]	0.0182	0.0256	0.0312			
Normalized Emittance [nm*rad]	86.3	121.44	148			
Dynamic aperture a/o _{inj} x / y	±3.5/6	±1.5 / 5	±12 / 50			

TME structures for CLIC-DB (Original and proposals)

Arc cell structures

Arc cell parameters for CLIC-DR (Original and proposals)

Arc cell						
Structure version	Original	V04	V06			
Bend field [T]	0.93	1.27	1.27			
Bend gradient [1/m^2]	0	0	-1.10			
Quad coefficient K1 [1/m^2]	27.21 / - 16.17	13.33 / -8.24	7.47 / -4.27			
Quad gradient [T/m]	220/-131	107.7/-66.6	60.3 / -34.5			
Sextupole coefficient K2 [1/m^3]	7700 / -9839	2985 / -2058	780 / -815			
Sextupole strength [T/m^2]*10 ³	62 / -80	24.1 / -16.6	6.30 / -6.59			
IBS						
Bunch current I, mA	0.539	0.3681	0.399			
Bunch population, N*10^9	4.1	4.1	4.1			
Emittance [nm*rad] / IBS gain factor	0.0946 / 5.1831	0.0926/3.62	0.090 / 2.89			
Normalized Emittance [nm*rad] ***	449	439.26	428.4			
Energy spread / IBS gain factor	1.571 / 1.402	1.620 / 1.45	1.551 / 1.38			
Bunch length [mm]	1.402	1.450	1.380			
Longitudinal beam emittance [eV m]	5339	5694	5188			

14.10.2009

13

Arc cell structures

1.5

Summary

Compact and effective

Extremely high lenses, non realistic design for conventional lens technology

Small lenses gradient, big dynamic aperture Gradient in bend dipoles, orbit correction dificulties

DA comparisson

Hybrid quadrupole (g = 150T/m, r = 10 mm)

Hybrid sextupole (s = $26 \cdot 10^3 \text{ T/m}^2$, r = 10 mm)

SR power evacuation strategy

Code for calculation of SR power loads for SR absorbers

 $\frac{dP}{d\Omega} = \frac{d^2P}{d\theta \ d\psi} = P_T \frac{21\gamma^2}{16\pi K} G(K) f_K(\gamma \theta, \gamma \psi)$ $f_K(\gamma \theta, \gamma \psi) = \sqrt{1 - \left(\frac{\gamma \theta}{K}\right)^2} \left\{ \frac{1}{\left(1 + (\gamma \psi)^2\right)^{\frac{5}{2}}} + \frac{5(\gamma \psi)^2}{7\left(1 + (\gamma \psi)^2\right)^{\frac{7}{2}}} \right\}$

 $P_T[kW] = 0.633 \cdot E_e^2[GeV] \cdot B^2[T] \cdot L[m] \cdot I[A]$

$$G(K) = K \frac{K^6 + \frac{24}{7}K^4 + 4K^2 + \frac{16}{7}}{\left(1 + K^2\right)^{\frac{7}{2}}}$$

K.-J. Kim, Nucl. Instr. And Meth A246(1986)

14.10.2009

For design and optimization of Petra-III damping section a special codes were developed for SR power load simulations. The codes performs a following actions:

- Ray tracing technique for accounting of absorber shadows
- Parametric optimization of absorber shape
- COD accounting
- 3D modeling of complicated absorber shape

14.10.2009

CLIC Workshop 2009

20 20

Choice for horizontal aperture for even

14.10.2009

CLIC Workshop 2009

40

3.5

3

2.5

2

1.5

1

0.5

Final absorber

6 m length final absorber can absorb up to 170 kW of SR power

Petra-III DWS commissioning

Comparising (calculation and measurement)

Nonlinear beam dynamics with strong damping in the CLIC damping ring

LIFERTAC – the beam-beam macroparticle simulation code ACCELERATICUM – 6D nonlinear tracing code with dumping accounting

The main goals of this efforts:

•To establish and test a computer simulation of the evolution of particles distribution in presence of strong damping, space charge effects and realistic lattice including different nonlinearities (the strongest are the chromatic sextupoles)

•To understand if the fast damping under described circumstances may influence the CLIC DR performance

DR lattice version v.44 dated May, 2005

Space charge influence on the damping

DR lattice version v.44 dated May, 2005

1000 particles, 19900 turns (~10 τ_{xy}), 30% particles were lost during first 400 turns

Space charge influence on the damping

Summary

- The first short prototype of the SC wiggler was developed, fabricated and tested in BINP. In spite of some unsuccessful test, the main technological innovation can be used for next modifications. The new design of wiggler was developed and fabrication of the new version was started
- The two modifications of the classical DR lattice were proposed for more realistic design. Additional optimization of the proposed schemes is possible after final choice of the of DR parameters.
- SR absorption scheme was proposed for wiggler sections of DR. The special SR absorption simulating code can be used for design and optimization absorption system.
- The special approach for analysis of nonlinear beam dynamic in case of fast damping was proposed. The influence of space charge in the final stage of the damping. The method can be used for analysis of final lattice structure.
- The results of these issues can be included in the final CDR of CLIC DR in the next year.

Thank you for attention