

CLIC Damping rings Wigglers

Remo Maccaferri

Otober 14, 2009

Wigglers effect with IBS

Parameters	BINP	CERN
B _{peak} [T]	2.5	2.8
λ_{W} [mm]	50	40
Beam aperture full gap [mm]	13	13
Conductor type	NbTi	Nb ₃ Sn
Operating temperature [K]	4.2	4.2

- Stronger wiggler fields and shorter wavelengths necessary to reach target emittance due to strong IBS effect
- Two wiggler prototypes
 - □ 2.5T, 5cm period, built and currently tested by BINP
 - □ 2.8T, 4cm period, designed by CERN/Un. Karlsruhe
- Current density can be increased by using different conductor type
- Prototypes built and magnetically tested (at least one by CDR)
 - Installed in a storage ring (ANKA, CESR-TA, ATF) for beam measurements (IBS/wiggler dominated regime)

NbTi Wiggler BINP Design

P. Vobly, et al., 2008

- Present design uses NbTi wire in separate poles clamped together (2.5T, 5cm period)
- Wire wound and impregnated with resin in March
- Prototype assembled including corrector coil and quench protection system by end of April
- Field measurements started at in June showing poor performance (50% of the expected current)
- Waiting for delivery at CERN to investigate the problems and possibly to fix-its.

Two short models are under study and construction....

Vertical Racetrack coils (WR) Double Helix-like coils (WH)

Vertical Race-track coils (WR)

Modeling:

- -Magnetic 2D
- -Forces calculations
- -Magnetic 3D
- -ANSYS

- : Done (Maccaferri, Schoerling)
- : Done (Maccaferri, Schoerling)
- : On going (Schoerling, Bernhart)
- : To be done (Schoerling end 2009)

Prototyping:

-Mechanical design : Done(to be updated)
-Winding and impregnation: Done (J.Mazet, JC Clement)
-Cold test : Done week 41 (09)

BUT...we have used NbTi wire. Nb₃Sn need more time & resources..

Training of the CLIC wiggler short model (2 periods 40 mm & 16mm gap)

Obtained Mid-plane peak field vs. current

Operating load line

Double Helix-like coils (WH)

Modeling:

- -Magnetic 2D
- -Forces calculations
- -Magnetic 3D
- -ANSYS calculations

Prototyping:

- -Mechanical design : Done (Renaglia, Maccaferri)
- -Winding and impregnation: On going
- -Cold test

: Not yet defined

: Done (R.Maccaferri)

: Done (R.Maccaferri)

: Done (S.Bettoni)

: Done (T. Renaglia)

The winding process is not yet fully mastered (need time& resources)

DR performance is based on super-conducting wigglers

CLIC

- Prototype on "conventional Nb-Ti" wire technology built at BINP failed. CERN is asked to help for solution(to be defined).
- □ The NbTi CERN Short model Fulfil the requested specifications
- More challenging wire technologies and wiggler designs are under studied at CERN and Un. Karlsruhe/ANKA but not yet tested.
- □ Final measurements from short prototypes to be expected by the CDR (October 2010).

Planning

CLIC

	2009	2010
Design Vertical Race-track Task WR		
Design Doble Helix-like Task WH		
Prototype production Task WR		
Prototype production Task WH		
Test acceptance Task WR		
Test acceptance Task WH		
Documentation & Reports Task WR & WH		

This project has been delayed by one year due to LHC repairs. Despite that we could carry on a crash NbTi program to demonstrate the feasibility of a 50 mm period 16 mm gap fulfilling the required specifications.

To complete our program, we need more support and follow-up from the laboratory side.