# Review of TBL PETS prototype production









David Carrillo on behalf of Accelerators Group, CIEMAT CLIC09 WORKSHOP 14/10/2009

## **General layout**



## **Copper rods**

- Each PETS was made of eight OFE copper rods (800 mm)
- These were the most difficult parts to fabricate: overall tolerance is +/-0.02 mm and roughness should be better than 0.4 micron
- The coupling cell is smaller: two different tools were necessary
- Two intermediate thermal treatments for stress relaxation



## **Copper rods problems**

- Problems with temperature control during machining
- Internal stresses are higher than those in OF copper (previous prototype)
- The copper rods were not measured while screwed to a flat plate



# **Cooling pipes production**







Cience Centro de Investigaciones





### Waveguides





#### Waveguides brazed in Spanish company AIMEN



Ciemat



#### Waveguide. Brazing problems in Spain

•In the first test, the company used AgCu alloy. Afterwards the company chose the NiAu alloy because in case of leaks, reparation is easier and to avoid nickel coating of steel flanges. Risk of leaks due to copper transformation

• One waveguide was bent due to deficient packing Solution: to unbend the waveguide as it is soft enough and polish the contact surface to get a good thermal contact and parallelism

•Copper parts were cleaned by ultrasonic bath only

- The oven at the Spanish company:
  - has not view port
  - •It has graphite heating elements
  - •The temperature measurement error is unknown





#### Power extractor. Problems with brazing in Spain









### Power extractor. Brazing at CERN



Ciemat





Courtesy Serge Mathot, CERN

•Copper parts were polished at CERN, because they were not flat enough (machining error in Spain)

•Copper parts were cleaned by ultrasonic bath, and at CERN, they were also etched and passivated

Power extractor was successfully brazed at CERN

#### **RF structure assembly**

MINISTERIC DE CIENCIA



# Mechanical measurements on the assembly

| ROD 1-5                   |   | ROE    | 0 4-8   | ROI     | 0 7-3   | RO             | D 6-2                                 |               |         |                     |
|---------------------------|---|--------|---------|---------|---------|----------------|---------------------------------------|---------------|---------|---------------------|
|                           | R | L      | R       | L       | R       | L              | R                                     | L             | AV      | ERAGE               |
| DOWN                      | 1 | 13.045 | 113.035 | 112.950 | 112.990 | 113.045        | 113.010                               | 112.950       | 112.950 | 112.997             |
| MID-DOWN                  | 1 | 13.040 | 113.040 | 112.960 | 112.980 | 112.930        | 112.925                               | 112.955       | 112.960 | 112.974             |
| BELOW RING                | 1 | 13.055 | 113.040 | 113.045 | 113.055 | 113.035        | 113.010                               | 113.045       | 113.035 | 113.040             |
|                           | 1 | 13.040 | 113.020 | 113.045 | 113.060 | <b>113.070</b> | 113.050                               | 113.065       | 113.055 | 113.051             |
| MID-UP                    | 1 | 12.965 | 112.980 | 112.990 | 112.995 | 112.980        | 112.985                               | 113.035       | 113.020 | 112.994             |
| UP                        | 1 | 12.990 | 113.010 | 113.040 | 113.050 | 112.970        | 112.940                               | 113.080       | 113.060 | 113.018             |
| AVERAGE                   | 1 | 13.023 | 113.021 | 113.005 | 113.022 | 113.005        | 112.987                               | 113.022       | 113.013 | 113.012             |
| THAT THE DE BRANN MENTEND |   |        |         |         |         |                | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | Carrillo. CLI | 113m    | <b>1M</b><br>HOP 11 |

## PETS tank assembly (I)



Ciemat

DE CIENCI









### PETS tank assembly (II)





DE CIENCIA





# TBL PETS MEASUREMENTS

David Carrillo on behalf of Accelerators Group CIEMAT CLIC09 WORKSHOP 14/10/2009

#### Single PETS bar measurements: Test device

- A device was designed\* to do RF tests of the single PETS bar
- It consisted of two side blocks put together with a single PETS bar in order to create inside a mode (TE<sub>10</sub>) with same phase advance, v<sub>q</sub>, etc as the decelerating mode



- The first 800 mm long bar has been successfully measured with the RF test bench
- Measurements strongly depend on electrical contact between device and copper rod and we could observe some deformations in the copper. As 3D measuring machine were quite repetitive no more copper rod have been tested using this device

\*Under Igor Syratchev's supervision

Ciemat

# Mode launcher

- Mode launcher was needed to produce working mode in order to do RF measurements on PETS before final assembly
- Two mode launchers were manufactured and measured and they were ok for measuring PETS final assembly
- The two mode launchers were tested together. S11=-30dB S22=-41 dB (Min At 11,989GHz)

Ciemat



HFSS input coupler model



Input couplers manufactured D. Carrillo. CLIC09 WORKSHOP

# Power extractor test bench

Coax

to

**WR90** 





#### Power extractor measurements



No visible change in S11 when removing wire, or absorber from port 4

Both S21 and S31 are aprox. -3dB at 12 GHz

Ciemat

#### PETS RF measurement bench



Ciemat

A special test bench was designed to measure the assembly of rods
A coaxial antenna was used to measure the field through the slots between the rods

# PETS Test bench



#### S51 Amplitude (Port1 -> Antenna)



# PETS phase shift measurements



Origin) is placed in one of the peaks near power extractor

Ciemat

## Dispersion Curve Upper part



# Dispersion CurveLower partIn the worst case a 10% power loss<br/>extraction is expected

Ciemat



#### Mechanical measurements

|                   |     |         |         |        | Be      | fore sh         | ims     |         |         |         |         |         |         |
|-------------------|-----|---------|---------|--------|---------|-----------------|---------|---------|---------|---------|---------|---------|---------|
|                   | ROE | ) 1-5   | ROD 4-8 |        |         | ROD 7-3         |         |         | ROD 6-2 |         |         |         |         |
|                   | R   | ₹LR     |         |        | L       | R               |         | L       | R       |         | L       | AVERAGE |         |
| DOWN              |     | 113.045 | 113.035 | 112.95 | 0       | 112.990         | 113.0   | 45      | 113.010 |         | 112.950 | 112.950 | 112.997 |
| MID-DOWN          |     | 113.040 | 113.040 | 112.96 | 0       | 112.980 112.930 |         | 112.925 |         | 112.955 | 112.960 | 112.974 |         |
| BELOW RING        |     | 113.055 | 113.040 | 113.04 | 5       | 113.055 113.035 |         | 113.010 |         | 113.045 | 113.035 | 113.040 |         |
| ABOVE RING        |     | 113.040 | 113.020 | 113.04 | 5       | 113.060         | 113.070 |         | 113.050 |         | 113.065 | 113.055 | 113.051 |
| MID-UP            |     | 112.965 | 112.980 | 112.99 | 0       | 112.995         | 112.980 |         | 112.985 |         | 113.035 | 113.020 | 112.994 |
| UP                |     | 112.990 | 113.010 | 113.04 | 0       | 113.050         | 112.970 |         | 112.940 |         | 113.080 | 113.060 | 113.018 |
| AVERAGE           |     | 113.023 | 113.021 | 113.00 | 5       | 113.022         | 113.0   | 05      | 112.987 |         | 113.022 | 113.013 | 113.012 |
|                   |     |         |         |        | A       | fter shi        | ms      |         |         |         |         |         |         |
|                   | RO  | D 1-5   | ROD 4-8 |        | ROD 7-3 |                 | ROD 6-2 |         | AVERAGE |         |         |         |         |
|                   | R   | L       | R       |        | L       | R               |         | L       |         | R       | L       |         |         |
| DOWN              |     | 113.040 | 113.035 | 113.0  | 00      | 112.945         | 113.    | 015     | 113.040 | )       | 112.950 | 112.950 | 112.997 |
| MID-DOWN          |     | 113.015 | 113.015 | 112.9  | 60      | 112.925         | 112.    | 885     | 112.890 | )       | 112.940 | 112.945 | 112.947 |
| <b>BELOW RING</b> |     | 113.025 | 113.010 | 113.0  | 15      | 112.980         | 112.    | 970     | 112.985 | 5       | 113.000 | 113.005 | 112.999 |
| <b>ABOVE RING</b> |     | 113.010 | 112.995 | 113.0  | 10      | 112.980         | 113.    | 005     | 113.025 | 5       | 112.995 | 113.010 | 113.004 |
| MID-UP            |     | 112.955 | 112.940 | 112.9  | 50      | 112.930         | 112.    | 930     | 112.955 | 5       | 112.975 | 112.990 | 112.953 |
| UP                |     | 112.990 | 113.000 | 113.0  | 45      | 113.045         | 112.    | 955     | 112.975 | 5       | 113.050 | 113.065 | 113.016 |
| AVERAGE           |     | 113.006 | 112.999 | 112.9  | 97      | 112.968         | 112.    | 960     | 112.978 | 3       | 112.985 | 112.994 | 112.986 |

# Sensitivity Analysis







Ciemat





Distance

valley

from peak to

#### A sensitivity analysis is ongoing to understand the cause of this detuning

 $\frac{df}{dIncRb} = -1.1 \frac{MHz}{m}$ 

D. Carrillo. CLIC09 WORKSHOP

#### **TBL Commissioning Status**





> up to 10 A through PETS

- > 20 MW max produced at a pulse length of 280 ns
- > Power production consistent assuming a form factor of 0.9
- >PETS series production launched together wit CIEMAT(series of 8)

#### TBL prototype beam line spring 2009 Courtesy Steffen Doebert, CERN



#### BPM, Quad Mover, Quad, PETS-tank



#### Conclusions & near future work

•TBL PETS prototype manufactured, assembled and its RF properties measured

• It has been installed in the beam line and is doing ok

• We are taking care of the assembly of three more TBL PETS units. Parts production is shared between CERN and CIEMAT

•We are going to contribute in the Test Module with the production of 1 double length PETS unit and a hammer choke mode flange

