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Introduction

The aim of the study is finding best linac optics in order
to transport the beam through linac in required
tolerances.

Currently transverse instabilities have been studied
only (which is one of the major task of instabilities in
linacs). Multibunch effects have been focused mostly .

New designing (which is not fully designed) accelerator
structure dimensions have been used for building up
lattice layouts.

Since we don’t have fully designed structure CTF3 SICA
structure have been used in some points

PLACET and analytical calculations have been used for
calculations
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Motivation

Current CLIC RF power production layout

Delay Leop x 2
gap creation, pulse
compression & frequency

multiplication

Drive Beam Accelerator
efficient acceleration in fully loaded linac

I 4 " 240 ms N
LI [ L \\\ =

140 psz train legnth - 24x24 sub-pulses - 4. 2 A 'D
2.4 GeV - 60 cm between bunches

_-l-IZI-_D-r-l_F ~
’!’ \ Combiner Ring x 4
pulse compression &
‘; Combiner Ring x 4 frequency multiplication

pulse compression & -
frequency multiplication

240' ns 5.8 us
LT
24 pulses - 100 A - 2.5 cm between bunches
-fl—-—|"

Drive Beam Decelerator Section (24 in total)

.\ Power Extraction Return Arc
' Bunch Compression

P s e e s g s = R

e Beam with 140 us pulse length and 4.2 A current is accelerated up to 2.4 GeV in
drive beam accelerator .

 After delay loop and combiner rings initial pulse is divided 24 sub-pulses with 100 A
pulse current and 240 ns pulse length.
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Motivation

One of the major problems
with accelerating intense
bunches in linac is the
instability driven by
wakefields.

This instability, generated by
off-axis beam trajectories, can
develop within a single-bunch
or along a train of bunches and
always leads to a dilution of
the emittance.

As it can be seen on table the
intensity of drive beam is very
high due to fully loaded
operation which means strong
wake field effect...

CTF3 | CLICDB
Energy (MeV) 150 2400
Pulse current (A) 3.5 4.2
Bunch charge (nC) 2.33 8.4
Pulse Length (us) 1.4 140
Bunch separation (cm) 20 60
No of bunches per pulse | 2100 70128
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1GHz DBA Structure

 SICA (Slotted Iris —Constant Aperture) principle like in CTF3

 PRF~10to 15 MW power is taken into account
In other words optimizing klystron cost

AR =iy

bin

L™

—

LI

Optimizations still being continued (by Rolf Wegner) n= APb /Prf,in
for optimum efficiency (which requires > %95) i
for filling time (which requires 245 ns) fill
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1GHz DBA Structure

e Although it is not finalized we
have taken into account

- 11 Celi

— Rgp=41 mm

— Varying gap

— Cell length=99.979 mm

— Gradient 2.4 MV/ per structure

(10 MW RF power)
HOM dampers e Which are convenient for
- N>95%
HOM’s have not been — t., =245 ns

simulated yet

From Rolf Wegner
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Short range wakes

Cavity Shape 03/10/2008

A.B.C.I. 9.2: CLIC DRIVE LINAC at 1 GHz
DDZ= 0.100 mm, DDR= 0.500 mm

Both ABCI code and Karl Bane’s B B 1 E N B e
formulas were used to calculate - :
short range wakes; T oa0f- .
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Since the structure does not = |
have constant gap —10}
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Distance from bunch head (m)

W= W(g)
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Long range wakes

— Since the HOM’s of new structure we were not simulated yet
— Since one of the goal of this study is determine the damping

requirements

CTF3 SICA structure transverse modes were scaled and
superposition of these modes have been used...

3 GHz SICA (CTF3)

f[GHz] | Q | K[VIpCm?]
412 | 874 460
434 | 8.11 660
520 | 71.55 170
549 | 3.24 40
412 | 7.25 760
435 | 10.20 420
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£t (1[GHz]j
3 [GHZ]
Q'=Q
KI — K [1 [GHZ])3
3 [GHz]

f : Frequency of mode
K: Kick factor of mode
Q: damping fact. of mod
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1 GHz SCALED

f [GHz] Q K [V/IpCm?2]
1.37 8.74 16.86
1.45 8.11 24 .49
1.73 71.55 6.31
1.83 3.24 1.33
1.37 7.25 27.85
1.45 10.20 15.31
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Single Bunch analysis

If only the particles inside a single bunch are taken into
account equation of motion of each particle

1 d d B FL('[,S)
@E{Y(S)E X(, s)} +K(s)x(r,s) = E(S)
L - FL(ns)=e[ de' W, (x—7) p(x') X(x'$)
time position -

W, : point like dipole wake per unit length
p : charge distribution
For constant offset the displacement

of the trailing slices in bunch will be _ slicesinbunch — ® [ 4p 0 T
. 54l bunch plrofile - | S
proportional of g
< 2SS
L ' [ x| {
' S © Job o1
AX. c Q F Ids P(s") £, | RN
, E(Sl) o ‘\".‘ \ .
0 s ol .
I R I N -
=) Al
L: Linac length 0 b= T
. -8 6 4 -2 0 2 4 6 8 -4 2 0 2 4
E: energy Distance from head of bunch (mm) X 18X
B: betatron functions inside structure Plots for spoiled beam due to short range wake effect

with large betatron
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Multi bunch analysis

For multi bunch case point-like bunches with distance in a train are
considered. Similarly the equation of motion of each bunch

bunch index: k J 0 1 d { (S)iX(Zk,S):|+K(S) x(z,,s) = F.(z.8)
Zy Z; position y(s) ds ds E(s)
& & E—Z: & & & »> B
«— F.(z.8)= Nez W, (z,-z) x(z,s)
i=0

Here wake function is sum of modes of structure

7 ~0, Z w,,: frequency of mode
W, (z)= Z2K sin| o, mg exp Q.. K.,: kick factor of mode
Q,,,: damping factor of mode

The displacement of each bunch in train is given with matrix A

iNeWL(zj-zk)jds'zBE((Ssi)') >k

0 <k

X,=A X, where A=exp(a) and @«

D.Schulte, “Multi-bunch Calculations In The CLIC Main Linac”, PACO09

CLIC Workshop 15.09.2009 A.AKSQOY 10/22



>
X
8
—
=

-
=1

i)
T

Beta Functions (mj
=N

%]

Beta Funclions (m)

]
T

() yo.

E(s')

—

1
4] 0.5 1 1.3 2 2.5

Distance {rm)
=
N By, ———
it ' il
[ ;i
il P
o ' ' [
Y P
P [
- .
I 1
4] i 2 2 4 5 3

Dizstance ()

CLIC Workshop 15.09.2009

Lattices

Minimum deflection of particles from their ideal path
requires small betatron oscillation which means
strong lattice
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Four different
lattice types were
taken into account

Quadrupoles were
considered to has
length between 22
cmto 35 cm

Maximum quad
field is considered
tobe 1T for 40 mm
quad aperture at
2.4 GeV
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Short range wake effects
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Plots shows
normalized final
phase space of
the sliced
bunches injected
with an offset
(PLACET)

The short range
wake effect seems
acceptable for ali
lattices.
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Long range wake effects
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DOUBLET
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DD :
$0990000000000000000000
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........................
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Bunch Number

| Calculations were done

using PLACET and
analytical equations for

2xQ
1<K

of CTF3
of CTF3

Plots shows normalized

jamplitudes of the

bunches at the
end of the linac for an
offset of incoming train.

Good agreement with
analytical calculations
and PLACET

The amplitudes (for 2xQm and 1xKm of CTF3) seems agreeable for all lattices
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Long range wake effects
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Calculations were
done for

3xQ,,
2xK_

of CTF3
of CTF3

Again good
agreement with
analytical
calculations and
PLACET

For FODO-1 TRIPLET
and DOUBLET
amplitudes seems
acceptable
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Coherent jitter
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Coherent jitter of all
bunches of the incoming
beam causes scattering of
the trailing bunches.

Coherent jitter is given with

2
F. = 12 ZAJK
nT\1% 7
Calculations was done
analytically with scaling
damping factor and kick
factor of CTF3 structure

For all lattices coherent
jitter is acceptable in green
and yellow areas.

FODO-1 lattice allows
larger Q and K
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Bunch to bunch jitter
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Random bunch-to-
bunch jitter of the
incoming beam also
leads to scattering of
the final bunches and it
is given with

1 .
= _Z ZAj,kAj,k
n j k

For all lattices the limit of
acceptability is the area
of green and yellow

Again FODO-1 lattice
allows larger Q and K
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Emittance growth

FODO-1 FODO-2

1.18 1.05
1.16 1.045
1.14 1.04
112 + 1.035 +

1.1 o 103 b
1.08 : 1.025 -
1.08 | I w102k
1.04 1015 bbb Gl
1.02 1.01

1 1.005
0.08 i 1 f i ;

0 200 400 600 200 1000 0 100 200 300 400
Quaddrupole number Quadrupole number
TRIPLET DOUBLET

2 - 1.45 . .
D08 Lo
T - OO SO SO SOUOOPS ORI SRRSO OSSO
1.7
1.8

400 600 800 1000

Quadrupole number

a 200

300 400 600
Quadrupole number

500

0 100 200

Misalignment for all
Quads

Err_x,y=0.2 mm
Err_px,y=0.2 m.rad

Misalignment for all
BPMs

so0 Err_x,y=0.2 mm

Err_px,y=0.0

RF structures and
other pieces are
perfectly aligned

1 to 1 corrections
were performed

Since quadrupole strengths are weaker in FODO2 alignment is easier than
other lattices. Triplet lattice the emittance growth is huge due to strong

quadrupoles and alignment di
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An example for off-crest acceleration
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e Plots shows various results for FODO-1 lattice

 Energy spread and emittance growth can be reduced but transverse single bunch

instability occurs even in strongest lattice
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CLIC DB time structure

2424 subpulses @ Even Buckets, @:0dd Buckets
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CLIC DB pulse consist of 24x24 sub pulses which fills even-odd RF buckets
At an exact time sub pulse switches and starts to fill odd (-even) bucket

On that point the wake will change due to timing of bunches.

This chance can cause not only amplitude change but also beam losses..

Tgis condition was not taken into account this situation in all calculations
above
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Conclusion

« We have 4 different type lattices to make calculations
for DB linac after the structure fully designed

e However the simulations give some ideas about
damping requirement for the structure incase the kick
factors of new structure are close values to CTF3

e The beam was considered to be without any phase or
energy error and we didn't make any calculation about
longitudinal stability

DB pulse time structure was not taken into account for
all calculations as well
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W |V/pC/m 7]

Further work plan

PETS

Phase Correction via

Final compression,
Phase Correction CR
DBA 2
L
T

Phase Measurement

L L

T T

First Compression, Phase and Energy Measurement

F.Stulle Last Beam Phy. meeting
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_6[
—8f
—10!l
_12¢
-14

EY [27] [09]
S o _©
WI| [KV/pC/m|

]
Q

Bunch Lenght (m)

Wake potentials for different bunch length for

designing structure (ABCI result)
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 Using same lattices

with final design of
structure and with DB
time structure

Checking longitudinal
stability with various
injection errors

Checking if bunch
compressor is
necessary on DB linac

Simulating off-crest
acceleration in order
to reduce energy
spread and emittance
growth
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thank you for your attention

And Special Thanks to Daniel Schulte
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