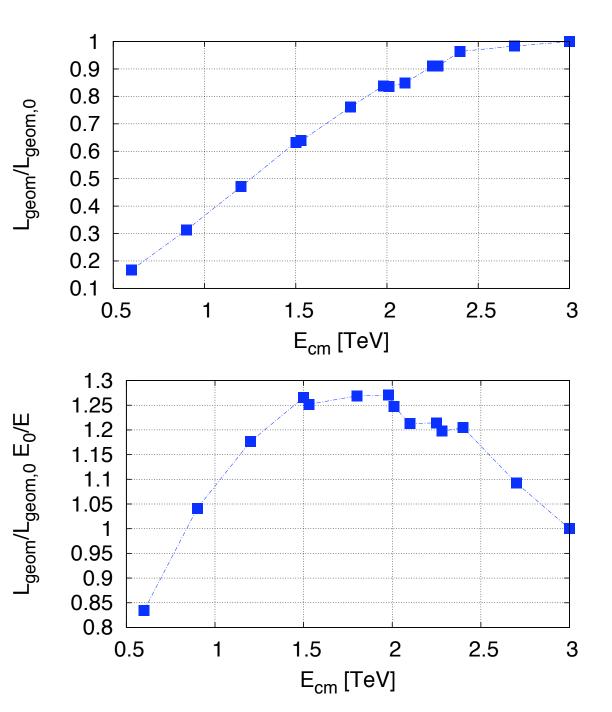
First Thoughts on Operation of CLIC 3TeV at lower energies

D. Schulte

CLIC Workshop October 14, 2009

Luminosity and Background Values


		CLIC(cons)	CLIC(nom)	CLIC(cons)	CLIC	CLIC(vo)	ILC	NLC
E_{cms}	[TeV]	0.5	0.5	3.0	3.0	3.0	0.5	0.5
f_{rep}	[Hz]	50	50	50	50	100	5	120
n_b		354	354	312	312	154	2820	190
σ_x	[nm]	248	202	83	40	40	655	243
σ_y	[nm]	5.7	2.26	1	1	1	5.7	3
Δt	[ns]	0.5	0.5	0.5	0.5	0.67	340	1.4
N	$[10^9]$	6.8	6.8	3.7	3.7	4.0	20	7.5
ϵ_x	$[\mu m]$	3.0	2.4	2.4	0.66	0.68	10	3.6
ϵ_y	[nm]	40	25	20	20	10	40	40
$\hat{eta_x}$	[mm]	10	8	8	4	7	21	8
β_y	[mm]	0.4	0.1	0.1	0.07	0.09	0.4	0.11
L _{total}	$10^{34} cm^{-2} s^{-1}$	0.88	2.3	2.7	5.9	10.0	2.0	2.0
$L_{0.01}$	$10^{34} cm^{-2} s^{-1}$	0.58	1.4	1.3	2.0	3.0	1.45	1.28
n_γ		1.1	1.3	1.2	2.2	2.3	1.30	1.26
$\Delta E/E$		0.045	0.07	0.13	0.29	0.31	0.024	0.046
N_{coh}	10^{5}	10^{-4}	10^{-3}	5×10^2	3.8×10^3	?	—	
E_{coh}	$10^3 TeV$	0.001	0.015	4×10^4	2.6×10^5	?	—	
n_{incoh}	10^{6}	0.03	0.08	0.11	0.3	?	0.1	n.a.
E_{incoh}	$[10^6 GeV]$	0.14	0.36	7.2	22.4	?	0.2	n.a.
n_{\perp}		8	20.5	19	45	60	28	12
n_{had}		0.07	0.19	0.75	2.7	4.0	0.12	0.1

Options

- Extraction at low energy
 - but need extraction and bypass lines
 - compromises fill factor and tunnel design or requires significant hardware intervention
- Remove the end of the linac
 - go down from $3\,\mathrm{TeV}$ by removing the end of the linac
 - one way option
- \Rightarrow For both of these solutions charge remains unchanged
- We use a lower gradient $(G = G_0 E / E_0)$
 - constant gradient along the linac
 - \Rightarrow charge needs to be proportional to gradient
- We reduce the gradient in a part of the linac
 - higher gradient initially
 - \Rightarrow charge can be somewhat higher but use full power

Luminosity for Constant Charge

- BDS magnetic fields scaled
 - final double needs to be exchanged for changes of more than $\approx 10\%$
- Geometric luminosity (for constant charge) does not decrease linearly
- \Rightarrow Need to understand reason
 - could be improvement of BDS performance due to reduce radiation at lower energy

Gradient and Bunch Charge

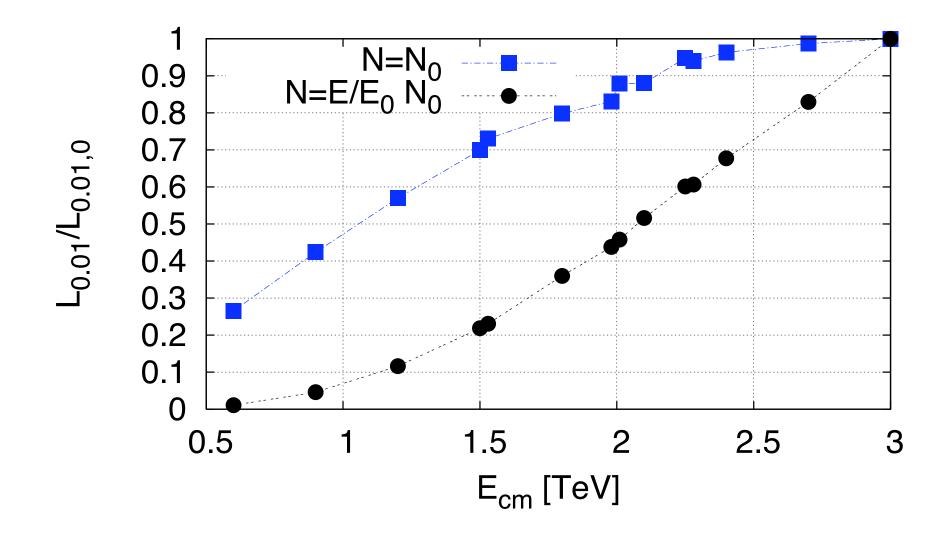
- Scaling $N/N_0 = G/G_0$ and $\sigma_z = \text{const}$ keep the relative energy spread $\delta(s)$ constant
- We require BNS damping for beam stability

$$\delta(s) \approx \beta_1^2(s) \frac{N e^2 W_\perp}{E(s)}$$

• Emittance growth due to dispersive imperfections scales as

$$\Delta \epsilon_y \propto \left(\frac{\sigma_E}{E} \Delta y\right)^2$$

 \Rightarrow independent of G, for our scaling


• Emittance growth due to wake fields scales as

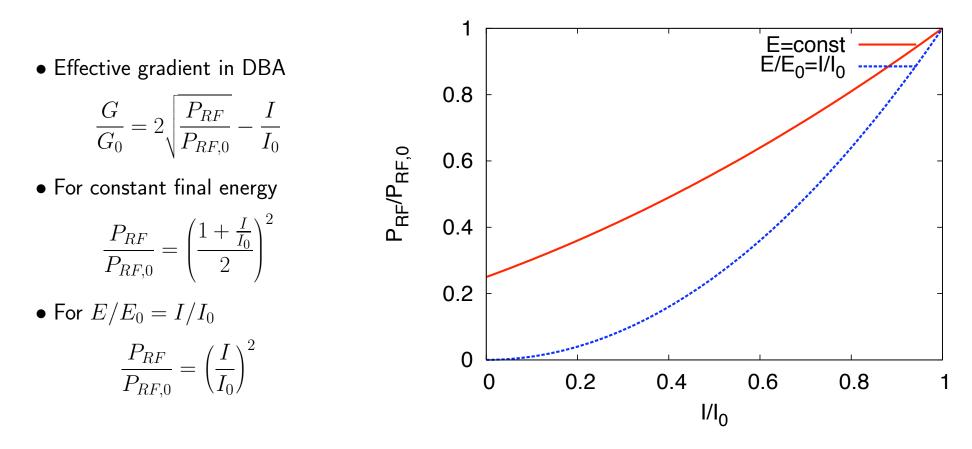
$$\Delta \epsilon_y \propto \left(\frac{NW_{\perp}(2\sigma_z)}{E}\Delta y\right)^2 E$$

 \Rightarrow improves with smaller G, for our scaling

Total Luminosity with Gradient Change

1.1 N=N₀ $N=E/E_0 N_0^0$ 0.9 0.8 L_{0.01}/L_{0.01,0} 0.7 0.6 0.5 0.4 0.3 0.2 • Significant luminosity loss due 0.1 to charge reduction 0 1.5 0.5 2 2.5 3 \Rightarrow Need to compensate E_{cm} [TeV] • Spectrum improves with lower 1 N=N0 N=E/E0 N0 energy 0.9 - in particular for reduced 0.8 charge L_{0.01}/L 0.7 0.6 0.5 0.4 0.3 1.5 0.5 2 2.5 3 1 E_{cm} [TeV]

Mitigation Strategies


- \bullet Change structure design to increase bunch charge for $3\,\mathrm{TeV}$
 - less luminosity loss for lower energies
 - but need to compromise $3\,\mathrm{TeV}$ performance
 - first indication is that this would be serious (A. Grudiev)
- Increase repetition frequency of drive beam
 - but what about beam dynamics and klystrons
- Increase pulse length
 - but pulse length is built into the geometry of CLIC

Drive Beam Acceleration

• Constant final energy

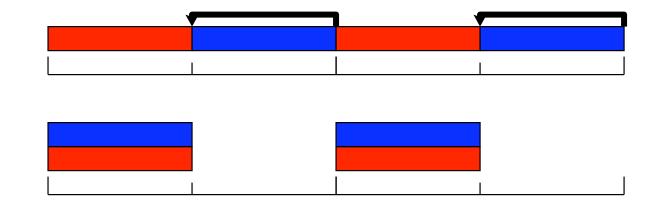
 \Rightarrow many beam dynamics issues improve relative apertures remain the same

- Final energy scaled as the current
 - \Rightarrow beam dynamics issues remain the same relative apertures become worse

⇒ If we want to increase repetition frequency in steps of 50 Hz can go to 100 Hz at $E_{cm} \approx 1.2 \text{ TeV}$

Comments on Klystron Power and Pulse Rate

• In principle could hope to increase repetition frequency up to

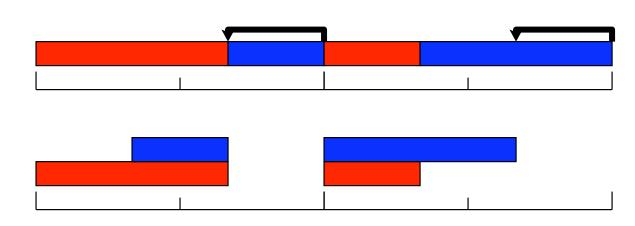

$$f_{rep} = f_{rep,0} \left(\frac{G_0}{G}\right)^2 \frac{\eta}{\eta_0}$$

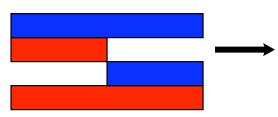
- But klystron efficiency goes down for lower output power
- \bullet But should only run at multiples of $50\,\mathrm{Hz}$
- Igor Syratchev estimates that we can expect to run at 120Hz at a quarter of the nominal power
 - \Rightarrow does not work if we run with full drive beam energy

 \Rightarrow could give factor two at $1.5\,{\rm GeV}$ if drive beam energy is reduced

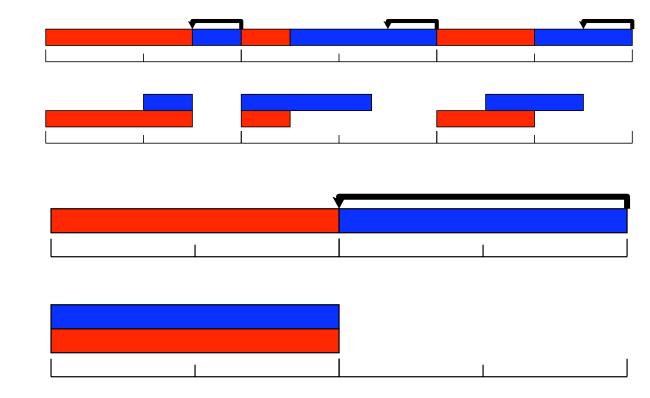
- Could improve this by new klystron design (E. Jensen, I Syratchev)
 - but needs exploration
- Also need to check that we can achieve stable beam

Pulse Length

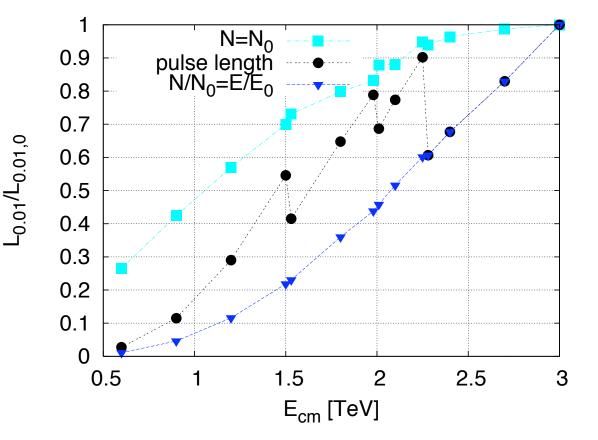



- The pulse length is defined by the geometry of the accelerator
 - \Rightarrow cannot change it arbitrarily

Pulse Length


- Well, some bird triggered an idea
- With small modification of delay loop we can change the combination factor and increase the pulse length
- Can accept longer pulses in main linac since the power is lower
 - strongest constraint from temperatur $P\sqrt{ au} \leq P_0\sqrt{ au_0}$
- For $G/G_0 \le 3/4$ can use upper scheme
 - $\Rightarrow 80 \, \mathrm{ns}$ longer pulse
 - $\Rightarrow 160 \text{ extra bunches per train}$

Pulse Length (cont.)


- For $G/G_0 \leq 2/3$ can use lower scheme
 - $\Rightarrow 120 \, \mathrm{ns}$ longer pulse
 - $\Rightarrow 240 \text{ extra bunches per train}$
- For $G/G_0 \leq 1/2$ can use lower scheme
 - need to modifiy first combiner ring
 - could consider using larger combiner ring with double pulses as baseline
 - $\Rightarrow 240 \, \mathrm{ns}$ longer pulse
 - $\Rightarrow 480 \text{ extra bunches per train}$

• Other options should be investigated

Conclusion

- \Rightarrow Luminosity is improved using longer pulses
- \Rightarrow This appears practical
 - but need to check that we did not miss a problem
- \Rightarrow Other options need more work
 - RF experts
 - physics
 - beam dynamics

- \bullet Attempted only to improve down to $1.5\,{\rm TeV}$
- We will work on further improvements
- Background reduced at lower energies, e.g. $n_H = 0.16$ at $1.5 \,\mathrm{TeV}$

Outlook and Questions to Answer

- How much is the klystron efficiency affected if we change the repetition frequency and power?
 - Is this acceptable in all subsystems?
 - Can we tolerate the lower drive beam energy?
- Can we change the pulse length?
 - Can the subsystems handle longer bunch trains?
 - The bunch charge would be lower, e.g. 800 bunches with half the charge
- How much do we compromise the 3 TeV performance if we increase a/λ ?
- For optimisation need more input from experiments, minimise

$$\sum_{i} \frac{\int \mathcal{L}(s) dt}{\mathcal{L}(s)}$$

• To which energy do we need to go?