Dark Current Simulation for the T18vg2.6 Structure

Zenghai Li, Arno Candel, Lixin Ge

SLAC National Accelerator Laboratory

CLIC Workshop, Oct 14, 2009, CERN

* Work supported by U.S. DOE ASCR, BES & HEP Divisions under contract DE-AC02-76SF00515

Zenghai Li

Outline

- T18vg2.6 Dark Current Simulation
- Dark current spectrum vs measurement
- Field emitter modeling
 - PIC simulation of emitter emission (Arno's talk)
 - Emitter heating due to emission current
 - Emitter heating due to RF field enhancement

T18vg2.6 Structure

- Structure being tested at KEK and SLAC
- Simulation Code: (ACE3P)
 - S3P S-Parameter & Fields
 - Track3P- Particle Tracking

T18 Structure Fields

RF fields obtained using S3P with surface loss S11=0.014; S22=0.032; S12=0.82

Structure tapered: higher E fields at output end

Higher B field at the output end, not as significant as E field

Dark Current Simulation Using Track3P

Dark Current Simulation

Fowler-Nordheim field emission

$$J(\varphi,\beta E) = 1.54 \times 10^{\left(-6+\frac{4.52}{\sqrt{\varphi}}\right)} \frac{(\beta E)^2}{\varphi} e^{\left(\frac{-6.53 \times 10^9 \varphi^{1.5}}{\beta E}\right)}$$

Secondary Electrons

Analyze accumulated effects of DC current & power

Dark Current Emitter Simulation

• Intercepted electrons - dark current heating on surface

iris #6

- Deposit energy into the wall results in surface heating
- Captured electrons: energy spectrum
 - Emitter (disk) location energy
 - Emitter density on disk amplitude
- Heating on dark current emitter
 - Due to emission current
 - Due to RF field enhancement on emitter

Dark Current vs RF Heating

Assumed emitters uniformly distributed. In reality, most likely clusters of emitters, result in local hot spots.

RF Heating distribution

Dark Current Heating

- Impact concentrated in high E region around iris
- Impact energy could be as high as a few MeV
- Depth of energy deposit ~ 1-2 hundred microns
- Significantly higher heating power at output end

RF Pulse Heating

- High on outer wall where E field is "low".
- Depth ~ skin depth
- Temperature rise is around 25°C at 100MV/m, 200ns pulse length
- At Eacc=80 MV/m; (Hs/Ea~0.004), Power_max=1.4 GW/m²

High Power Test Data - Breakdown Distribution

F. Wang

KEK, Higo, Doebert

Red: real cell timing Blue: linear cell timing

- Breakdown rate significantly higher at the output end
- Good correlation with field enhancement and dark current heating at the output end

Dark Current Measurement & Simulation

Schematic of KEK high power test and dark current measurement

T18_VG2.4_Disk_#2 Dark current spectra measured 18 June 2009

Dependence on power

Dependence on width

Measurement Data at KEK (Higo)

Dark Current Spectrum Comparison

Measured dark current energy spectrum at downstream

Simulation Eacc=97MV/m. dE/E=0.1, zbp=2.9m

Differences?

Measured dark current spectrum details would depend on the number of emitters on the disks

Zenghai Li

Heating Due to Dark Current Impact?

- Dark Current Collimation By Disk Iris.
- Some electrons have very high impact energies.

Zenghai Li

Electron Impact Energy

Impact Energy vs Emission Site Field

Heating Due to Dark Current Impact

- Field emission current density based on FN can be significant
 - with beta=50, Eacc=100 MV/m,
 - $J_{peak} \sim 10^{13} \text{ A/m}^2$
- Need to study effects of individual emitters
 - PIC simulation of initial emitter phase space

Emitter micron or less in size

Sharon Lee ICSE2006

- MeV energy electrons
- Larger spot and deep depth
 - Iocalized heating may not be as significant
- Current may be much higher when breakdown is being developed?
 - site of future emitter?

Zenghai Li

"Modeling" Of Field Emitters

- Calculate field enhancement beta of emitter protrusion
- PIC simulation: FN + self consistent space charge effect
 - Using a emitter shape with right beta vale (50 as measured)
 - Initial emitter phase space impact heating distribution
 - Emission current emission heating of emitter

Zenghai Li

Single Tip: Beta vs Shape

Field contour plot

Field enhancement beta vs tip elongate ratio and tip length

Double Tip: Beta vs Shape

base_height	Base_r	height2	base_r2	dztip	beta
6	3	5	1	2	23
6	3	5	0.5	2	54
5	2	5	1	2	23
5	4	5	1	2	21
5	4	5	1	4	27
5	4	5	0.5	4	52

Single-tip		
base_height	base_r	Beta
5	0.5	38
5	0.87	22
5	1	17
5	1.5	11
5	2	8
5	4	4

Zenghai Li

Field Emission Heating

- Current is pulled out in ~ ± 40deg rf phase (FN model)
- Field emission current density
 - $J_{peak} \sim 10^{13} \text{ A/m}^2$ with beta=50, Eacc=100 MV/m
 - Need PIC to include space charge effects (Arno's talk)
- This current produce heating on emitter

Emitter Heating Due to RF

- Emitter protrusion can produce significant surface magnetic field enhancement
- May lead to higher local heating on emitter tip due to RF magnetic field

Heating On Emitter

 Both RF and Emission (field+thermal) contribute to emitter heating

- Larger cell iris higher RF heating
- Smaller iris (but high E) higher emission heating
- In high E region, strong E force pull the tip outward
 - may result in development of "sharp" emitters over time
 - lead to breakdown when dark current and dark current heating exceed threshold

NLC H60VG3S17 Structure

Surface Field

RF Heating

Peak Surface Field & Heating

- · Surface E field and RF heating higher at the output end
- Most breakdowns in the front

NLC H60VG3S17 Structure

- Surface field along disk contour
- Disk 8 and 50 comparison (same acceleration gradient)

Summary

- Progress being made in simulating CLIC T18 structures using Track3P. Dark current spectrum compared with measurement – which may provide information of field emission conditions of disks
- Both RF and field emission contribute to emitter heating
 - High temperature plus strong E force pulling (of emitter tip) could lead to development of "sharp" emitters over time, may eventually reach breakdown threshold
 - Self consistent (space charge) emitter emission being performed using PIC to study emission heating
 - Surface field enhancement due emitter protrusion being calculated using Omega3P to study RF heating
- Detailed of modeling of field emitters in progress

