SPL specifications and design choices

F. Gerigk, O. Brunner, S. Calatroni, E. Ciapala, M. Eshraqi, R. Garoby, A. Lombardi, R. Losito, V. Parma, J. Tückmantel, M. Vretenar, U. Wagner, W. Weingarten

1st SPL collaboration meeting, 11-12 December 2008, CERN

Outline

- basic SPL parameters,
- nominal layout,
- review of basic parameters (frequency/temperature),
 - beam dynamics,
 - HOMs,
 - SC cavity properties (frequency, temperature, Q-slope),
 - RF equipment,
 - cryo-modules & cryogenics,
 - overall performance & summary.

site layout

operation type	low-power (nominal)	full-power (nominal)	full-power (red. energy)
E [GeV]	4	5	2.5
P _{beam} [MW]	0.192	4	4
f _{rep} [Hz]	2	50	50
I _{average} [mA]	0-20	20/40	40
I _{source} [mA]	40	40/80	60
chopping	yes	3/8	no
t _{pulse} [ms]	1.2	0.8/0.4	0.8
n _{protons/pulse} [10 ¹⁴]	1.5	1	2
filling time PS2 [ms]	1.2	1.2 1.2/0.6	
main user	PS2/ISOLDE	PS2/neutrinos	EURISOL

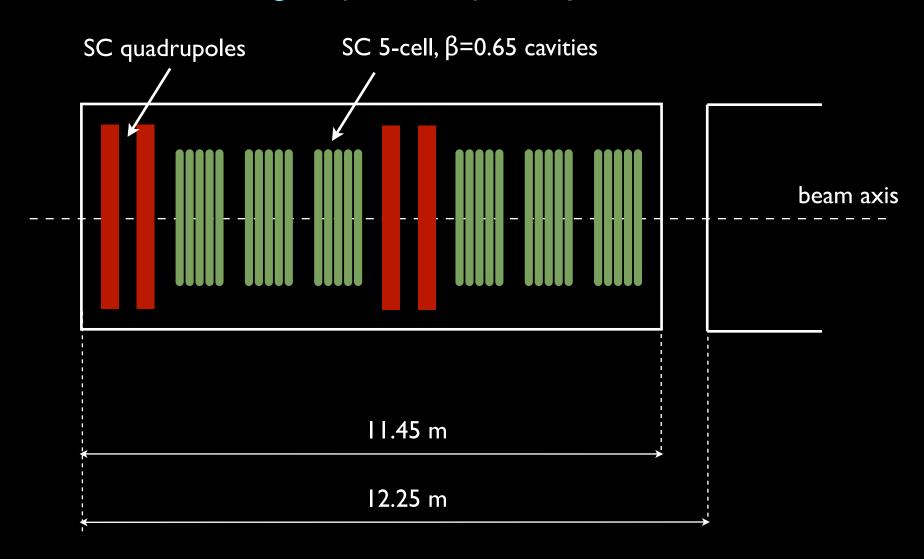
^{*} power couplers always matched to 40 mA (same filling time)

comments on front-end

- source current: assume that the source current/time structure remains constant, not yet clear if source current can be modified in intensity, so for now we assume that average pulse current is modified by 3 MeV chopper,
- pre-chopper: designed for 2 us rise time, (we need 20 us for space charge stabilisation), only meant to define beginning and end of beam pulse,
- **chopper**: nominal specs: remove 3 out of 8 bunches (2 ns rise/fall time), maximum on-time presently limited to 1 us (PSB), longer periods can only be achieved with on-off operation: e.g. 1 us, 50 ns, 1 us...,

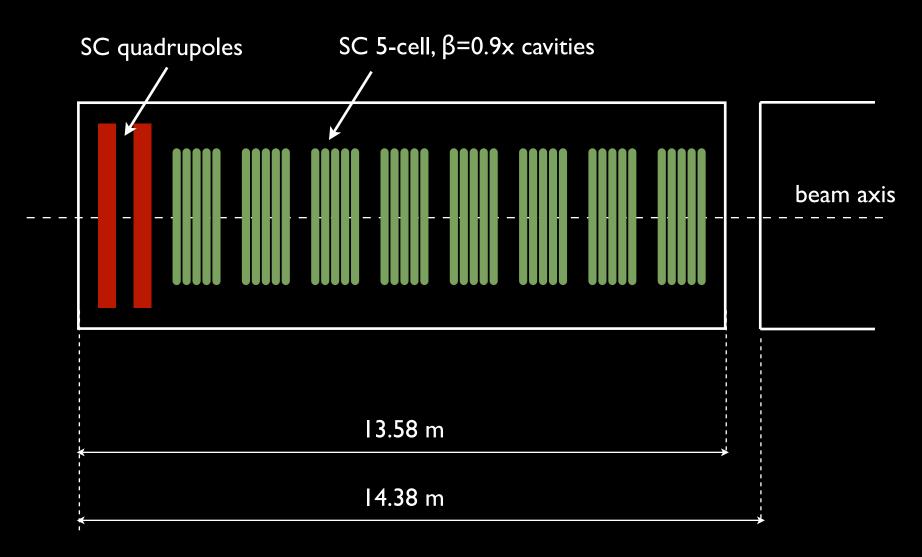
comments on high-power RF

- power couplers are matched for 40 mA, same filling time for all scenarios, in case of 20 mA operation with twice the number of cavities (LP-SPL) we would need 11% more power to cover reflections from the coupler
- the filling time with -15% of klystron saturation power, consider wave-guide losses, distribution losses, etc, right now we assume the bare beam power to calculate the filling time (pessimistic),
- assume 30% + waveguide losses as power margin for klystrons: ~40% (is this too much??),


nominal SPL layout

Linac4 (160 MeV) SC-Linac (4/5 GeV) 3 MeV 50 MeV 102 MeV 160 MeV 643 MeV 4/5 GeV H'source RFQ chopper DTL CCDTL PIMS β =0.65 β =0.9x 704.4 MHz

- Linac4 is under construction and is designed for high duty cycle,
- the geometric cavity betas will be discussed in the joint session of working groups 2 and 4,


low-beta cryo-module

doublet focusing, 2 periods per cryo-module

high-beta cryo-module

doublet focusing, 1 period per cryo-module

review of basic parameter choices

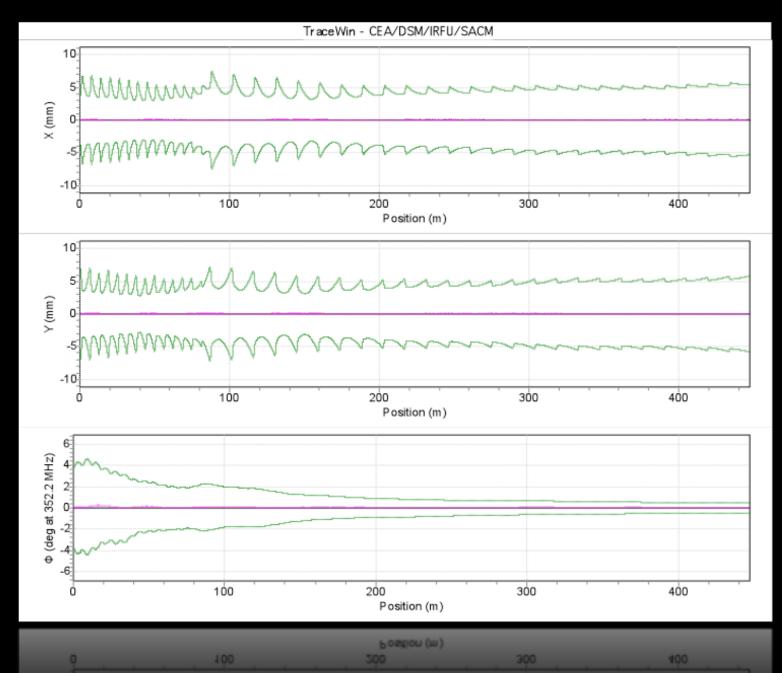
which RF frequency (704/1408 MHz) and which cryogenic temperature (2/4.5 K)? CERN-AB-2008-067

- RF frequency
- replace 5-cell 704 MHz cavities by 9-cell 1408 MHz cavities to keep approximately the same length,
- use b<1.0 cavities (e.g. 0.92/0.94) for high-energy section (savings in linac length),
- assume 25 MV/m @ β =1 for 704 and 1408 MHz,
- include beam dynamics matching section for all scenarios,

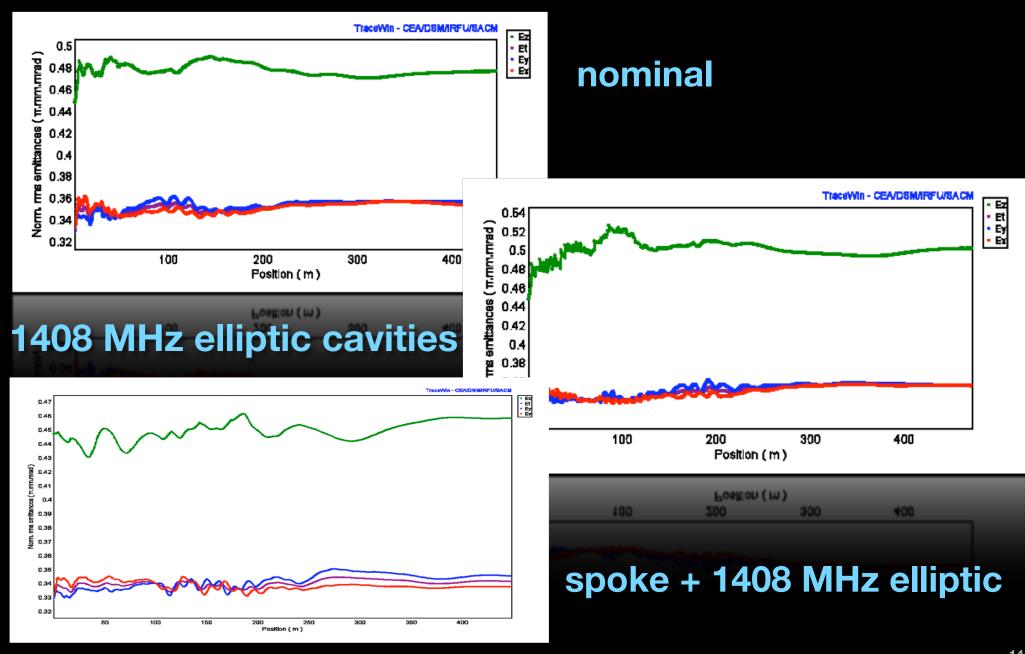
possible SC architectures II

SPL type	nominal improved	high-frequency option	spoke option
frequency [MHz]	704.4	1408.8	352.2/1408.8
beta families	0.65/0.92	0.6/0.76/0.94	0.67/0.8/0.94
cells/cavity	5/5	7/9/9	4/5/9
trans. energies [MeV]	160/581	160/357/884	160/392/758
output energy [MeV]	5122	5144	5075
gradients [MV/m]	18.7*/24*	17.5*/21.3*/24.2*	8.5/9.5/24.2*
cavities p. module	6/8	4/4/8	3/4/8
cavities p. period	3/8	2/4/8	3/4/8
cavities p. family	42/200	30/40/208	27/24/216
cavities in total	239	278	267
length [m]	445	499	485

^{*} corresponds to 25 MV/m @ β =1


Beam dynamics

(A. Lombardi, M. Eshraqi)


more details please see M. Eshraqis talk in WP4

beam dynamics: 5 x rms envelopes

nominal:

rms emittances

beam dynamics nominal beam

SPL type	nominal improved	high- frequency	spoke/ elliptical
frequency [MHz]	704.4	1408.8	352.2/1408.8
beta families	0.65/0.92	0.6/0.76/0.94	0.67/0.8/0.94
Δε _x [%]	5.6	6.3	1.5
Δ ε _y [%]	8.2	7.8	5.3
Δ ε _z [%]	6.8	12.1	2.5
Lossy runs	-	-	1

beam dynamics: longitudinal errors

Case I: $\Delta E (1\sigma) = 125 \text{ keV}/\pm 0.5 \text{ deg from Linac4}, \pm 0.5\%/\pm 0.5 \text{ deg in SPL}$. Case II: $\Delta E (1\sigma) = 125 \text{ keV}/\pm 1 \text{ deg from Linac4} \pm 1\%/\pm 1 \text{ deg in SPL}$.

SPL type	11.011	nominal high frequency spoke/ellip		high frequency		elliptical
	case I	case II	case I	case II	case I	case II
frequency [MHz]	704	704.4		1408.8		1408.8
beta families	0.65/	/0.92	0.6/0.76/0.94		.6/0.76/0.94 0.67/0.8/0.94	
$\Delta \mathbf{\epsilon}_{x,rms} [\%]$	0.07±0.27	0.21±0.41	0.24±0.62	1.02±1.11	0.05±0.22	0.24±0.49
$\Delta oldsymbol{arepsilon}_{ ext{y,rms}}$ [%]	0.18±0.26	0.59±0.53	0.10±0.38	0.42±0.75	0.09±0.24	0.33±0.50
$\Delta \epsilon_{z,rms}$ [%]	0.40±0.58	1.13±1.33	0.27±0.70	1.90±1.88	0.19±0.36	0.81±0.76
ΔE [MeV]	±2.0	±3.8	±1.8	±3.5	±1.8	±3.5
$\Delta \phi$ [deg, st.dev.]	0.26	0.57	0.30	0.61	0.30	0.61
Lossy runs	0	0	9/500	21/500	0	0

beam dynamics: summary

- **★ transverse plane:** reducing the aperture due to higher frequency cavities (1408 MHz) is unlikely to influence transverse beam loss: beam pipe/rms radius > 20,
- even for strong mismatch, the outermost halo particles are usually confined to beam pipe/rms radius < 12,</p>
- **longitudinal:** ε-growth and energy/phase jitter does not seem to be a show-stopper for any architecture (thanks to a careful matching and longer matching sections for 1408 MHz!),
- the largest longitudinal ε-growth and the only longitudinal losses (at all) were observed for the 1408 MHz version.

Higher Order Modes

more details please see J. Tuckmantels talks in the combined WP2/4 session

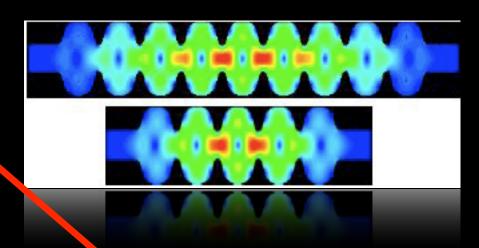
Higher-order modes (BBU) I

step I: pure frequency scaling: same number of cells

	704 MHz	1408 MHz
number of cells	n	n
cavity length	⊔	L/2
areas	А	A/4
volumes	V	V/8
frequency	f	2 x f
stored energy	W	W/8

scaling only with freq.

$$Q_{ex} \propto rac{V_{acc}}{(R/Q)I_{beam}}$$


$$\Delta V_{ind} = 0.5q\omega(R/Q)$$

	704 MHz	1408 MHz
$(R/Q)_{\parallel}$	1	1
Q _{ex}	1	1
$\Delta V_{\text{ind (}}$ monop., short range, p. cav.)	1	x2
Z_{\parallel}/L (monop., long range)	1	x2
Δp_x (dip., long range, p.cav.)	1	x2
Z _⊥ /L (dip. long range)	1	x4
IBBU	1	/4

Higher-order modes (BBU) II

step II: doubling the cell number (still perfect cavities)

- Q_{ex} doubles because the stored energy doubles
- Some modes have higher amplitudes in the centre than in the end-cells (worse for higher cell numbers!).
- HOM coupling is proportional to the square of the fields.
- When doubling the number of cells, the coupling can go down by 8:1!!

	704 MHz	1408 MHz
ΔV_{ind} (monop., short range, p. cav.)	1	x4
Z_{\parallel}/L (monop., long range)	1	x416
Δp_x (dip., long range, p.cav.)	*	x832
Z_{\perp}/L (dip. long range)	1	x832
BBU	1	/(832)

Higher-order modes (BBU) III

step III: imperfect structures

- The end-cell tuning will flatten the field for accelerating mode but will make things worse for the HOMs ("crooked" field profiles).
- Increases the risk for HOMs, with "uneven" field profile (e.g. field only on one side of the structure, or completely trapped modes with almost no field in the end cells).
- Frequency difference between neighbouring modes is halved when cell number doubles: with nearly quadratic frequency distribution towards the pass-band borders, the Δf for the last 2 modes is reduced by almost 4!

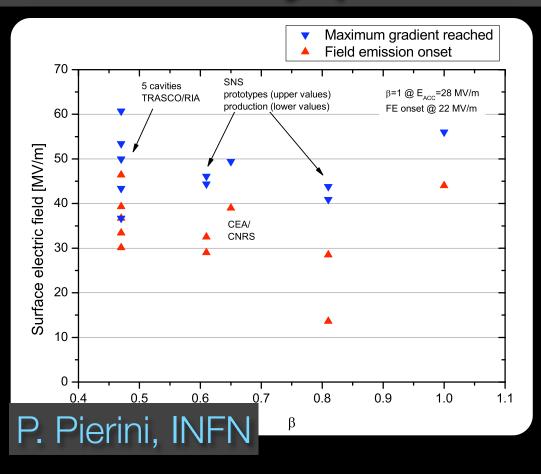
	704 MHz	1408 MHz
BBU,threshold	1	/(8-128)
risk of trapped modes	1	x 2-4

Higher-order modes IV

scaling from SNS results:

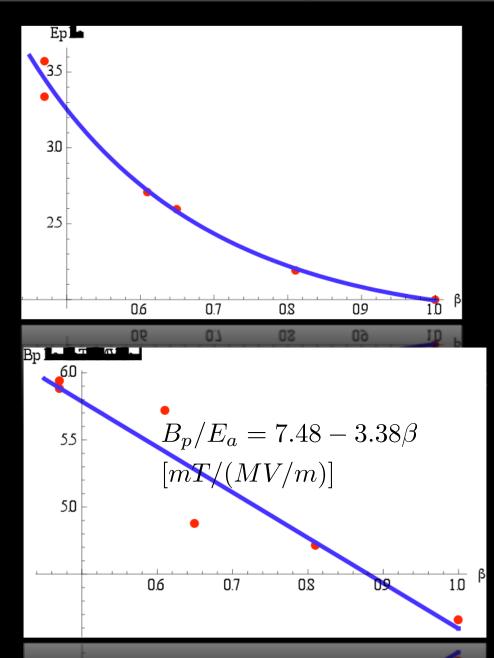
- SNS simulated that longitudinal instabilities are ok, if Q_{ex}(all HOMS) < 10⁸, 6-cell, 806 MHz, I_{beam} = 20 mA,
- scaling with current, frequency, n_{cells}, linac length means: Q_{ex} (all HOMS) ≤10⁶,
- including end-cell problems & worst cases: Q_{ex}≤ 10⁵

cryogenic heat load:

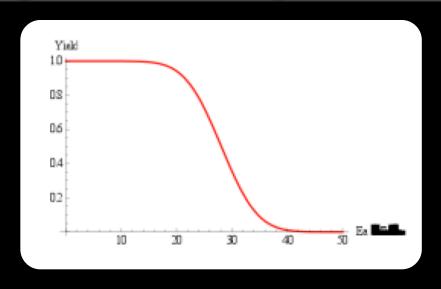

- assuming a worst case scenario (HOM exactly on a multiple of a machine line) we have to limit Qex to 107,
- can we simply detune the cavity in such a case? (R. Duperrier)

Cavity properties

(W. Weingarten, S. Calatroni)


see also WG2

SC cavity performance for β <1



gradient independent of freq.

25 MV/m looks challenging but not impossible!

yield vs performance

for electropolished ILC cavities at 1300 MHz:

- at 28.1 MV/m the yield is $\approx 50\%$,
- at 25 MV/m the yield is $\approx 75\%$,

but basically no difference between single cell and multi-cell results!

Laboratory	freq. [MHz]	<e<sub>acc></e<sub>	ΔE _{acc} [MV/m]	ΔE _{acc} / E _{acc} [%]	E _{acc} at 90/50% yield
DESY, 9-cell	1300	28	5.2	19	22/28
ORNL/JLAB, 6-cell β=0.61, (extrapolated to β=1)	805	17.1 (23)	1.9 (2.6)	11 (11)	15/17 (20/23)
ORNL/JLAB, 6-cell β=0.81, (extrapolated to β=1)	805	18.2 (20)	2.6 (2.8)	14 (14)	15/18 (16/20)

Q dependance on f,T,Bp?

$$Q = G/R_s$$
 $R_s = \underbrace{R_{BCS}(f,T) + R_{s,mag,trapped}(f,T,B_{trapped})}_{\text{known (e.g. Wikipedia!)}} + \underbrace{R(f,T,B_p)}_{\text{new addition}} + R_{res}$

Evaluating test results of elliptical, spoke, quarter-wave resonators between 80 and 1300 MHz and 1.4 and 4.6 K a "phenomenological" parametrisation for the field dependance of Q was introduced as:

$$R(f, T, B_p)[n\Omega] = (0.73 \pm 0.22) \cdot 10^5 \cdot (f[GHz])^{1.5} \exp(0.035B_p[mT]) \cdot \exp(-18/(T[K])) / (T[K])$$

Superfluid helium Normal helium T = 1.5, 1.8, 2.0 KT = 2.2, 3.3, 4.5 K $R_{res} = 2n\Omega$ $R_{res} = 2n\Omega$ 5×10^{10} 5×10^{10} Q(E_a), 704 MHz 1×10^{10} 1×10^{10} 5×109 5×109 1×10^{9} 1×10^9 Q(E_a), 704 MHz 5×10⁸ Superfluid helium Normal helium T = 1.5, 1.8, 2.0 KT = 2.2, 3.3, 4.5 K $R_{res} = 2n\Omega$ $R_{res} = 2n\Omega$ 1×10^{11} 5×10¹⁰ 5×1010 Q(E_a), 1408 MHz 1×10^{10} 1×10^{10} 5×109 5×109 1×10^{9} 5×108 Q(E_a), 1408 MHz 5×10⁸

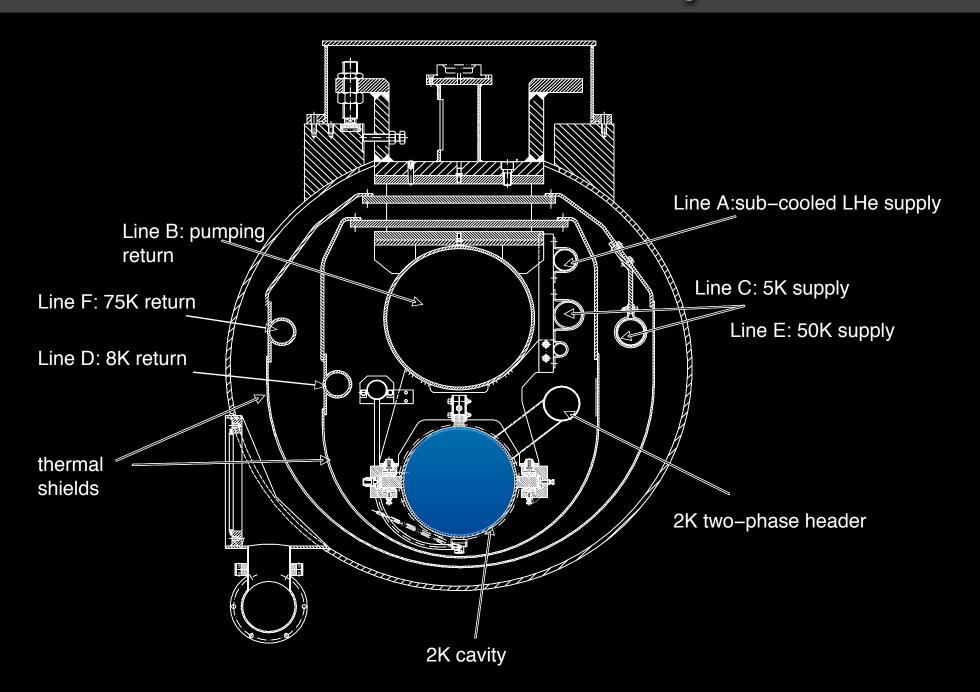
Q dependance at 25 MV/m

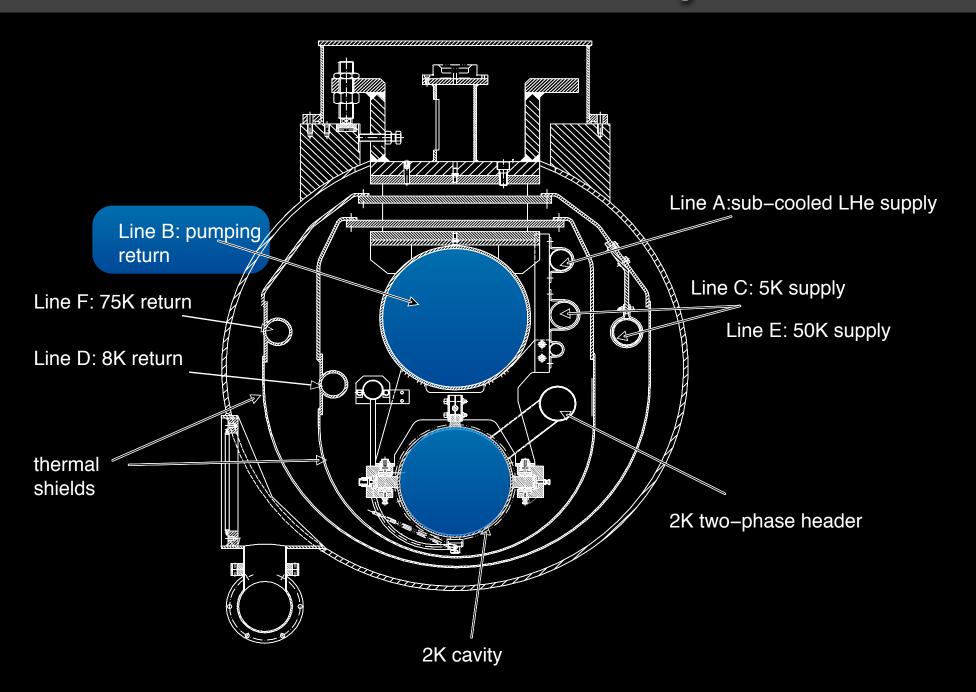
at 2K: $Q_{704 \text{ MHz}} = 2.5 \times Q_{1408 \text{ MHz}}$

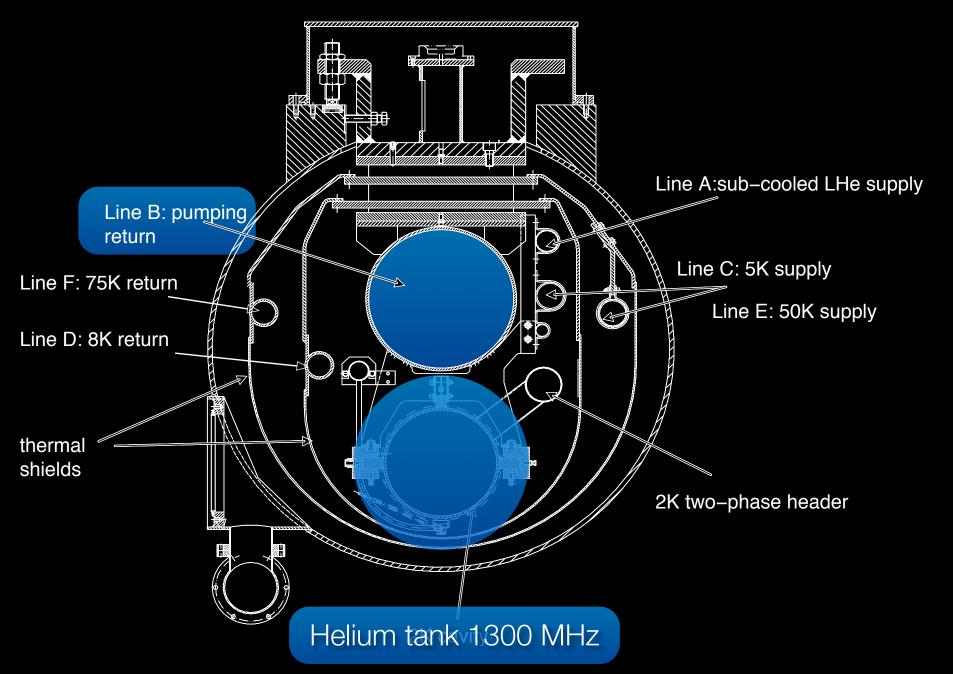
at 4.5K: $Q_{704 \text{ MHz}} = 3.0 \times Q_{1408 \text{ MHz}}$

at 704 MHz: $Q_{2K} = 21 \times Q_{4.5K}$

at 1408 MHz: $Q_{2K} = 26 \times Q_{4.5K}$


summary cavity performance:


- → assume that the same gradients can be reached at 704 and 1408 MHz,
- → 25 MV/m at 704 MHz looks possible but may mean to accept a yield of 75%,
- \rightarrow assume Q₀ of 0.77x10¹⁰ at 2K at 704 MHz,
- → Q-values at 4.5 K (25 MV/m) are up to 25x lower than at 2 K!
- → Q-values are ~3x higher at 704 MHz than at 1408 MHz (25 MV/m).
- → We do not save R&D effort, nor do we gain in performance when going to 1408 MHz instead of 704 MHz.


Cryogenics

(V. Parma, U. Wagner)

working group 3

At 2K we can re-use the ILC design principle for both frequencies, but:

- the port openings will have to be adapted to the SPL cavities (power coupler, HOM coupler, ...),
- the design has to be adopted for the SPL slope of 1.7 deg,
- dynamic heat load of the HPSPL is estimated to be ~10 times higher than for ILC,
- an identical copy of the ILC cryo-module cannot be used!
- unlikely that we can have a major saving on the cryo-module cost, when going to 1408 MHz!

cryogenic infrastructure

		eq. capacity @ 4.5 K [kW]		el. power [MW]	
	T [K]	704 MHz	1408 MHz	704 MHz	1408 MHz
HP SPL, 2% beam d.c. (4% cryo d.c.)	2	20.8	18.3	5.2	4.6
HP SPL, 2% beam d.c. (4% cryo d.c.)	4.5	95.4	81.9	23.9	20.5

excessive!

cryogenics summary

- 4.5 K leads to an excessively large cryo-plant (size and power consumption),
- the development of a SPL specific cryo-module is recommended and it will be based on the ILC design,
- the design effort, size, and cost for 704 and 1408 MHz seems similar,
- installed capacities are similar for both frequencies,
- designing a cryo-module for a slope of 1.7 deg is no difference for 704/1408 MHz,

RF hardware

(O. Brunner, E. Ciapala)

more in WP1

RF hardware: klystrons

for both frequencies we want >5 MW peak power, ~10% duty cycle

704 MHz:

- for Linac4, Thales, CPI, and Toshiba were contacted,
- expected beam power: 4-5 MW@ SPL duty cycle,
- similar to SNS klystrons at 805 MHz,
- no off-the-shelf device exists on the market,
- for single-beam the specifications are at the limit for MBK they should be straight forward.

1408 MHz:

- Toshiba, CPI, and Thales have built 10 MW (150 kW) klystrons for DESY @ 1300 MHz,
- They expect around 5 MW peak power for 10% duty cycle,
- likely to be more expensive than 704 MHz,
- no off-the-shelf device exists on the market.

limits given by average power density (cooling): advantage for 704 MHz MBK!

RF hardware: power distribution

704 MHz:

- large wave-guide components,
- 5 MW circulators for high duty cycle exist (SNS),
- ferrite loads look feasible,
- high average power vector modulator easier at lower frequencies,

1408 MHz:

- smaller wave-guide components,
- no high duty cycle circulators available for 5 MW,
- phase shifters need at least volume,
- ferrite loads unrealistic, no suitable water loads available,

unlikely to gain in size when going to 1408 MHz, because power density enforces bulky components, can even be more difficult at 1408 MHz!!

RF hardware: coupler

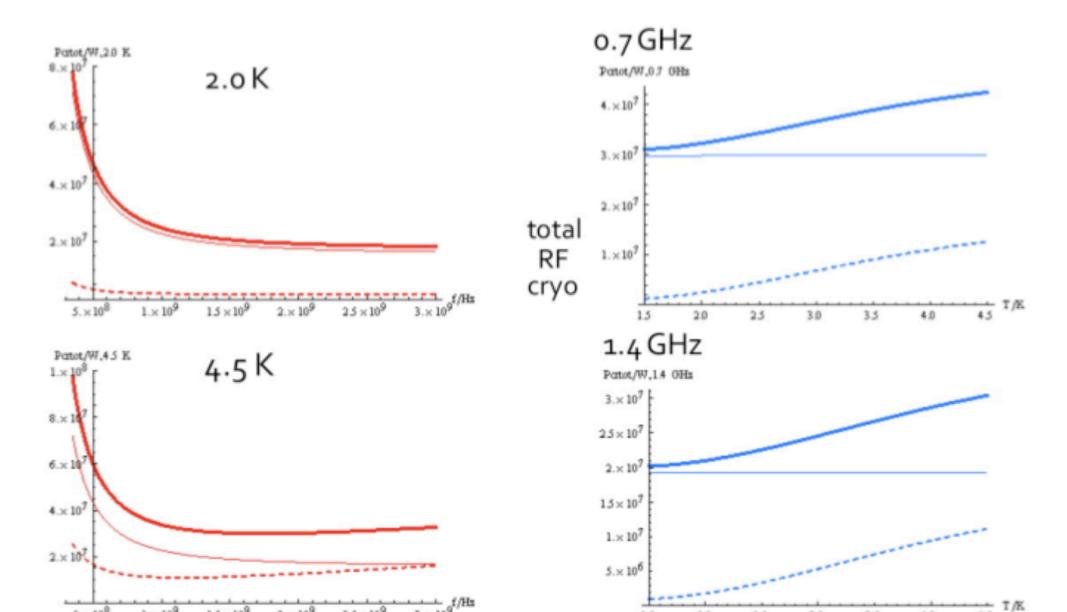
for both frequencies we need ~1 MW peak power, ~10% duty cycle

704 MHz:

- $P_{av} \approx 40/80 \text{ kW } (0.4/1.2 \text{ ms})$ pulses @ 40 mA),
- A 1 MW coupler has been developed at CEA within HIPPI, and will be tested soon.
- If this does not work it will be further developed with money from FP7.

1408 MHz:

- $Arr P_{av} \approx 26/66 \text{ kW } (0.4/1.2 \text{ ms})$ pulses @ 40 mA)
- Cornell is using a modified TTF coupler, gas cooled was tested with average power up to 61 kW CW (should support up to 75 kW).
- Main geometry remained the same, should achieve the same peak power as TTF (1.5 MW) but was not yet tested at this level.


some R&D needed at both frequencies, no show-stopper!

Facility optimisation: electrical power consumption

(W. Weingarten, F. Gerigk)

el. Power vs freq.

el. Power vs temperature

2.0

facility optimisation: el. power

4 MW, 5 GeV, neutrinos:

HPSPL: I_b =40 mA, t_P =0.4 ms, 50 Hz, 5 GeV, 4 MW	704 MHz	1408 MHz
P _{el} (RF + cryo 2K/4.5K)	24.1 MW + 5.2/23.9	16.0 MW +4.6/20.5
P _{cryo} @2 K (eq.@4.5 K)	20.8 kW	18.3 kW
P _{cryo} @4.5 K	95.4 kW	81.9 kW

Summary of frequency/temperature review

overall summary (assuming 2 K):

	704 MHz	1408 MHz	352 MHz (spoke) + 1408 MHz
length	445 m	+12%	+9%
N _{cavities}	242	+15%	+11%
N_{eta} -families	2	3	2+1
tr. beam loss	ı	-	-
jitter	medium	medium	medium
ε-growth (x/y/z)	5.6/8.2/6.8	6.3/7.8/12.1	1.5/5.3/2.5
trans. beam loading	ı	-	-
BBU (HOM)	I _{BBU,704}	1/(8128)	higher/lower
trapped modes	normal risk	24 higher risk	?/higher
SC gradients		-	-
field control		more complex	

...continued (assuming 2 K)

	704 MHz	1408 MHz	352 MHz (spoke) + 1408 MHz
cryo-modules	follow ILC	follow ILC	2 different types
cooling power @4.5 K	15.3 kW	15.5 kW	?
klystrons	comfortable: MBK	difficult	existing/difficult
RF power coupler	feasible	feasible	feasible
RF power density limit (distribution)	ok	problematic	bulky/ problematic
overall power consumption (RF +cryo, nom. SPL)	28 MW	-30%	?
power converter	more bulky	saves tunnel space	1
synergy with ESS	yes	no	no

for high-current, multi-MW proton linacs:

- 2 K is mandatory,
- lower frequencies entail higher RF power consumption despite the higher Q values (longer cavity filling time),
- the cryogenic power consumption does not change with f,
- beam dynamics (HOMs), cavity control, and RF power generation & distribution clearly benefit from lower frequencies,
- spoke option seems interesting but requires mastering of 2 cavity types (3 cavity families), yields long filling times, and results in a longer linac,
- no significant savings or simplifications expected when going to 1408 MHz, on the contrary!
- for the SPL we choose 704 MHz and 2 K!

additional information

CERN TWIKI pages:

https://twiki.cern.ch/twiki/bin/view/SPL/SplWeb

or:

http://www.cern.ch/project-spl