The optimum choice of the geometric beta

F. Gerigk, M. Eshraqi, M. Schuh

1st SPL collaboration meeting, 11-12 December 2008, CERN

nominal SPL layout

low-beta cryo-module

doublet focusing, 2 periods per cryo-module

high-beta cryo-module

doublet focusing, 1 period per cryo-module

gradient versus beta

We assume 25 MV/m @ β =1!

for $\beta < 1$ the gradients are scaled according to:

comparison of cavity betas

using a constant synchronous phase of -15 deg, and LEPtype end-cell fields: 9% shorter high energy section (7% of total linac length) for b=0.92

SPL type	1.0	0.92
input energy [MeV]	160	160
output energy [MeV]	5011	5059
cavity beta	1.0	0.92
trans. energies [MeV]	646	646
gradients [MV/m]	24.9	24.1
average gradient [MV/m]	11.6	12.8
cavities p. family	200	192
length [m]	377	345

comparison of cavity betas II

using a phase ramp for b=0.65 and a different end-cell model results in a negligible difference

SPL type	original	original-5GeV	b=0.65/0.92	C/1677/0.93
input energy [MeV]	180	160	160	160
output energy [MeV]	3560	5138	5139	5003
cavity beta	0.65/1.0	0.65/1.0	0.65/0.92	0.67/0.93
trans. energies [MeV]	643	646	574	659
gradients [MV/m]	19/25	19/25	19.3/24.1	19.8/24.2
average gradient [MV/ m]	5.4/11.4	4.9/11.9	4.8/12.2	4.0/13.56
cavities p. family	42/136	48/200	42/208	60/176
cavities in total	178	248	250	233
length [m]	362	477	462	444

at β =0.68 we can no longer inject at 160 MeV, so 0.67 seems too risky -> stay with β =0.65

comparison of b=0.65 end-cell fields

[&]quot;SPL specifications..", SPL collaboration meeting '09, F. Gerigk et al

comparison of b=0.92 end-cell fields

