

Splitting of high power H⁻ beams: the EURISOL technique

A. Facco INFN-LNL

A. Facco

1° SPL collaboration meeting

The EURISOL facility

EURISOL driver requirements

- 4 MW H⁺ (or H⁻) primary beam to a neutron converter
- 3×100 kW H⁺ secondary beams to RIB direct targets
- finely tunable beam intensity
- parallel operation in cw mode

A new kind of beam splitter is required

Splitting methods

- 1. pulsing the beam, then diverting some of the pulses with rf deflectors
- 2. changing A/q of some particles, then splitting the two beams by means of a dipole magnet

the second method, with a H⁻ primary beam, can be used <u>also</u> in cw operation

1° step: changing of the H⁻ charge state

- 1. stripper foils:
 - $H^- \rightarrow H^-$, H^0 , $H^+ // H^- \rightarrow H^0$, $H^+ // H^- \rightarrow H^+$ (depending on foil thickness)
 - not able to hold MW power
 - impossible to regulate the branching ratio after chosing the foil
 - <u>not usable on the main beam for our purpose</u>
- 2. laser stripping:
 - $H^{-} \rightarrow H^{-}, H^{0}; H^{0} \rightarrow H^{0}, H^{+}$
 - sufficient laser power density reachable only in pulsed operation
 - sufficient laser-beam interaction reachable only with pulsed beam
 - <u>not easy, high power lasers required</u>
- 3. magnetic stripping:
 - $H^- \rightarrow H^0$
 - branching ratio finely tunable
 - <u>simple and inexpensive: only small dipoles required</u>

2° step: beams separation

- After the charge changing device: 2 superimposed beams, H⁻ and H⁰
- The beam separation is obtained with a dipole magnet:
 - H⁻ is transported by the magnet
 - H⁰ proceeds straight
- the magnetic field must be low enough to avoid significant H⁻ neutralization (thus losses) along the bending magnet (reasonable treshold: below 1 W/m)
- After leaving the dipole, H⁰ must be transformed in H⁺ to be further transported

3° step: Carbon foil stripping

- the stripping efficiency depends on the foil thickness: a nearly full stripping can be obtained
- long foil lifetime is possible for ~100 kW beams

EURISOL Splitter Layout

Primary beam: 1 GeV, 4 MW Secondary beams: 100 kW

- 3-step splitting scheme:
 - (C) Magnetic neutralizer to extract H^0 beam
 - (D) 1° bending magnet to separate H⁰ from H⁻
 - (SF) stripper foil on the H^0 line to strip H^0 into H^+
 - 2° bending magnet to send H⁺ to target and residual H⁰
 (~50 W) to a beam dump (*BD*)

Emittance growth in Lorentz Stripping

 the shorter the beam path along B above the stripping threshold, the less is the emittance growth of H⁰

 \rightarrow a short dipole is required

 a system that does not modify the output beams trajectories while changing B (thus the the stripping efficiency) is also desirable

How to limit emittance growth?

- neutralising chicane with 3 short dipoles
- magnetic fields:
 - 1° dipole: -B
 - 2° dipole: +2B
 - 3° dipole: -B

- the B dependence of Lorentz neutralization is very steep:
 - \rightarrow with this scheme the H^0 beam is formed only in the short center magnet
- the H⁻ output beam trajectory is independent from the B value

Magnetic length	30 mm
Separation for house coils	40 mm
Magnetic fields [T]	0.33; 0.66; 0.33
θ , deflection angle	~ 0.1 °
d ₀ , H ⁰ displacement	0.11 mm

•EURISOL case: •2.5%, neutralization, finely adjustable

Chicane Fringe Fields

Short rectangular magnets, small bending angle

Very weak focusing in both horizontal and vertical planes \Rightarrow Chicane beam optics insensitive to dipoles fringe field shape

Stripper Foil for 1 GeV H⁰

- Necessary thickness for nearly full stripping (unconverted H⁰ beam ~50 W): 500 µg/cm²
- 1 GeV 100 µA H⁰ ⇒ the heat load is estimated 0.1 W ⇒ not critical
- Expected foil lifetime of several weeks

H⁻ Transport Along 3 Splitters

The line can be designed in order to repeat splitting without changing the primary H⁻ beam characteristics

1° SPL collaboration meeting

H⁻ - H⁰ Phase Spaces

•H⁻ main beam not perturbed by the chicane
•emittance unchanged
•the primary beam can be used for any application (synchrotron injection, etc.)
•splitting can be repeated many times

•H⁰ emittance increased by Lorentz stripping
(~ 3) on the bending plane
•not critical in a beam directed to a RIB target

EURISOL 1 GeV Multiple Extraction

- •3 splitting stations for <u>cw</u> proton beams
- •4 simultaneous users :
 - $\bullet 1 \times 4 \text{ MW}$
 - $\bullet 3 \times 0 {\div} 100$ kW finely tunable

• for more information, see paper on PRST-AB

PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 10, 091001 (2007)

Splitting of high power, cw proton beams

Alberto Facco* and Rita Paparella

INFN-Laboratori Nazionali di Legnaro, viale dell'Università, 2, I-35020 Legnaro, Padova, Italy

Dan Berkovits

SOREQ NRC, Yavne 81800, Israel

Isao Yamane

KEK, High Energy Accelerator Research Organization, Oho 1-1, Tsukuba, Ibaraki 305, Japan (Received 25 June 2007; published 13 September 2007)

A simple method for splitting a high power, continuous wave (cw) proton beam in two or more branches with low losses has been developed in the framework of the EURISOL (European Isotope Separation On-Line Radioactive Ion Beam Facility) design study. The aim of the system is to deliver up to 4 MW of H⁻ beam to the main radioactive ion beam production target, and up to 100 kW of proton beams to three more targets, simultaneously. A three-step method is used, which includes magnetic neutralization of a fraction of the main H⁻ beam, magnetic splitting of H⁻ and H⁰, and stripping of H⁰ to H⁺. The method allows slow raising and individual fine adjustment of the beam intensity in each branch.

DOI: 10.1103/PhysRevSTAB.10.091001

PACS numbers: 29.27.Ac, 41.85.Ct, 41.85.Lc

Summary and Conclusions

- A new high power beam splitter design has been developed
- Relatively simple and reliable technology, suitable for cw and pulsed beams
- Allowing elimination of high power kickers and lasers
- Fine regulation of the secondary beam intensity without perturbing the primary beam
- Low beam losses expected
- Primary H⁻ beam emittance unchanged
- Secondary beam emittance suitable for lossless transport to ~100 KW RIB targets
- Splitting can be repeated many times

The 3-step proposed splitter could be profitably used in SPL for parallel feeding of different users, like synchrotron and RIB targets