Processing of SPL cavities to obtain design performance Introduction

Sergio Calatroni

Tasks

• Main goal of the SPL Collaboration Meeting:

« To propose how to demonstrate 25 MV/m (β = 1) and 19 MV/m (β = 0.65) before mid-2011 »

- Goals within this Working Group Subtask:
 - (β = 0.92 or β = 1?)
 - Define strategy to reach full performance (25 MV/m for
 - β = 1 cavities) for a fully equipped prototype cryomodule
 - Identify required equipment (e.g. electro-polishing, HPWR) and what is missing

EUCARD WP 10.2 (from Dieter Proch)

- Cavities for Proton Linacs, Electropolishing and surface investigations
 - Sub-task 1: Design and fabrication of β = 0.65 ; 704 MHz elliptical cavity equipped with a titanium helium reservoir. Preparation and assembly in clean room. Test of the cavity in vertical cryostat.
 - Sub-task 2: Design and fabrication of $\beta = 1$; 704 MHz elliptical cavity. Preparation of the cavity and assembly in clean room. Development of a vertical EP bench.
 - Sub-task 3: Study of interfaces between the cavity and the cryomodule.

Why EP?

- SPL goal: 25 MV/m accelerating field for $\beta = 1$
- SPL goal: 19 MV/m accelerating field for β = 0.65

Cavity	Accelerating field [MV/m]	Peak surface electric field [MV/m]	Peak surface magnetic field [mT]
β=1	25	50	100
β=0.92	24.5	50	105
β=0.65	19	50	100

- These values have been chosen because they are (and we want to achieve) state-of-the art performance.
- Must be obtained reliably on fully equipped cryomodules
- Statistically, only EP processed cavities can reach these goals (FE, quenches, etc.)

Choice of accelerating gradient Stochastic parameters - DESY results Series tests E_a

Development of Field Emission since Jan 06

SPL Collaboration Meeting

30 April 2008

Sergio Calatroni - 11/12.12.2008

SPL Review (a) CERN - WW

 E_{n} =56.2 MV/m

18

34/0(T/a)

sn.

Choice of accelerating gradient Stochastic parameters - DESY results Gradient spread Due to Quench

Probability of "Quench Only" DESY 9-cell Cavities (EP cavities only)

Compiled by H.Padamsee from DESY Data Base, TTC Meeting at DESY, January 14 - 17, 2008 https://indico.desy.de/conferenceOtherViews.py?view=standard&confld=401

30 April 2008SPL Review @ CERN - WW19SPL Collaboration MeetingSergio Calatroni - 11/12.12.20086

B_p=120 mT

Choice of accelerating gradient Stochastic parameters

E_p=40.4MV/m

ORNL/JLAB results (BCP only)

SPL Collaboration Meeting

Electropolishing: diffusion layer

At the cathode, with no competing reaction:

$$I = I_0 \exp\left\{\frac{nF}{RT}(E - E_{eq})\right\} \quad \longleftarrow \quad \mu = \mu_0 + RT \log(Cf)$$

Overpotential, in practice the voltage across the cell

Polishing effect

SPL Collaboration Meeting

Sergio Calatroni - 11/12.12.2008

Polarisation curves

Low-β cavities

HIPPI 704 MHz β=0.5 cavity

EP difficulties

- To uniformly distribute the potential all-over the cavity surface (in particular for β=0.65)
 - \rightarrow Computer simulations of cathode shape
- To cope with the mass transfer limitations
 - \rightarrow Include simulations of flow. Circulation vs. stirring.
- To cope with the heating generated by the process
 - → Cooling capacity must be adapted to keep the acid within the optimal temperature window
- To handle potentially harmful acids in a safe way
 - → Vertical electropolishing simplifies assembly
- Post-treatment not 100% understood
 - \rightarrow Chemical etching vs. detergent cleaning.

• .

Further needs for surface preparation

- EP before cavity welding (cortical layer removal)
 - \rightarrow Lab or industry?
- Vacuum firing of niobium
 - \rightarrow Lab or industry?
- Final HPWR
 - \rightarrow opportunity for nozzle optimisation?
- "Mild" bakeout
 - \rightarrow Almost certainly needed. Experience in low β cavities?

•

Goals and beyond

- Fabrication, surface preparation and vertical test of one (or few) β=1 cavity: under control within EUCARD (CEA)
- Fabrication, EP and vertical test of one β=0.65 cavity: under control within EUCARD (IN2P3), EP to be done either at CEA or CERN
- Fabrication, surface preparation of the full complement of β=1 cavities for a cryomodule: options?
 - Needs for resources
 - Availability of industry for manufacture
 - Needs for infrastructure in labs: surface preparation, assembly, vertical test, cryomodule assembly, horizontal test

SPL Collaboration Meeting

WP10.2 Deliverables

10.2.1	Results of SC proton cavity tests ($b = 1$ and $b = 0.65$)	R	M33
10.2.2	Reproducibility of the process as a Function of the EP-Mixture	R	M36
10.2.3	Summary of test results with vertical EP	R	M42
10.2.4	Evaluation of enhanced field emission in Nb samples	R	M48

Relative comparison

TABLE A. Summary of results in other labs.						
Laboratory	$\langle E_{a} \rangle$	$\Delta E_{\rm a}$	$\Delta E_{\mathrm{a}} / < E_{\mathrm{a}} >$	$< E_{\rm a} > [{\rm MV/m}]$ at 90		
	[MV/m]	[MV/m]	[%]	(50) [%] processing yield \dagger		
DESY 1.3 GHz (all)	28	5.2	19	22(28)		
ditto (quench) 9-cell	30	6.9	23	23(30)		
ORNL/JLAB SNS 805 MHz						
$\beta = 0.61$ 6-cell	17.1	1.9	11	15 (17)		
$\beta = 1 \text{ (extrapolated)}\ddagger$	23.0	2.6	11	20(23)		
$\beta = 0.81$ 6-cell	18.2	2.6	14	15(18)		
$\beta = 1$ (extrapolated)	20	2.8	14	16(20)		

TABLE X: Summary of results in other labs.

 \dagger 90 or 50% yield is equivalent to 11 or 100% of re-processing needed, respectively. The re-processing rate in percent is equal to 100(100-yield)/yield.

[‡] The extrapolated valued is calculated by means of the relation as in Fig. 5, depending whether the field limitation is caused by a quench or field emission. In the first case the surface magnetic field scaling relation is used, in the second case the surface electric field relation is applied.

From: Assessment of the basic Parameters of the CERN SPL - O. Brunner, S. Calatroni, E. Ciapala, M. Eshraqi, R. Garoby, F. Gerigk, A. Lombardi, R. Losito, V. Parma, C. Rossi, J. Tuckmantel, M. Vretenar, U. Wagner, W. Weingarten - CERN-AB-2008-067 BI/RF

Vertical EP in Cornell

Cooling by water spraying on the outside

SPL Collaboration Meeting

Sergio Calatroni - 11/12.12.2008

EP system for 1.5 GHz Cu cavities at CERN

SPL Collaboration Meeting

Sergio Calatroni - 11/12.12.2008