BNL Plans

Ilan Ben-Zvi and Rama Calaga Collider-Accelerator Department Brookhaven National Laboratory And Center for Accelerator Science and Education, Stony Brook University and BNL

High Current Cavities at BNL

- BNL working with AES developed a high current β =1 cavity at 704 MHz.
- The cavity was tested to a high gradient.
- BNL and AES have been developing advanced cavity fabrication and processing capabilities.
- Work will be done in the context of the Stony Brook University Center for Accelerator Physics and Education.

703.75 MHz 5-cell β =1 cavity

Fundamental Power Couplers

Cavity during initial chemistry

Excellent field performance

BNL1X with He vessel

Comparison to CERN-AB-2008-064, F. Gerigk et al.

BNL1X with He vessel

5-cell Cryomodule in ERL Hall

High Power Couplers

- We are developing an SRF gun aimed at 1 MW beam power.
- The gun will be fed with two FPCs, intended for 0.5 MW CW each (higher design power)
- Test of the couplers will take place early next year.

New facilities

Niobium BCP facility

Vertical Test Facility

Plans:

- BNL is interested in collaborating in the SPL
- Together with Stony Brook University and Advanced Energy Systems and in collaboration with CERN we will submit a proposal to DOE to design, build and test a 704 MHz β =0.92 cavity for the SPL.
- We plan to pursue DOE funding for support of the SPL collaboration.

BNL cavities for SPL

I. Ben-Zvi, R. Calaga BNL, Stony Brook SPL Workshop, Dec 12, 2008

Ack: A. Burrill, H. Hahn, J. Sekutowicz, P. Kneisel, G. McIntyre, Y. Xiao & AES

- Design strategy, measurements
- Improvements & SPL cavity
- Conclusions

The Problem

for 1 V/pC

The Solution

Graphic courtesy AES

Main mantra for high currents: <u>Simple & Robust</u> 704 MHz, Cavity Stiffness, Large Apertures, Warm Ferrites

Cavity Design

Note: BNL I is fabricated & tested, BNL II is under optimization

3 Stage, Parametric Scans

Natural Conduit, BP

Naturally better for coupler kicks

Some Facts

Difference mainly in wall angle

Parameter	Unit	BNL $1(HC)$	BNL 2 (HC)	CEBAF(HG)	TESLA(HG)		
Frequency	[MHz]	703.75	703.75	1497	1300		
Number of cells	-	5	5	7	9		
(R/Q) * G	$[\Omega^2]$	9×10^4	9.69×10^4	2.1×10^5	2.8×10^5		
E_p/E_a	-	1.97	2.36	1.96	1.98		
H_p/E_a	[mT/MV/m]	5.78	4.76	4.15	4.15		
Cell to cell coupling (k_{cc})	-	3%	4.68%	1.89%	1.87%		
Sensitivity Factor $\left(\frac{N^2}{\beta k_{cc}}\right)$	-	$8.3 imes 10^2$	5.3×10^2	2.6×10^3	4.1×10^3		
Field Flatness	-	97.2%	97.3%	97.5%	95 %		
Lorentz detuning coeff.	$[Hz/(MV/m)^2]$	1.28 (UnStiff)	NE	2	1		

 $\mathsf{B}_{_{\mathsf{Peak}}}$ reduced by 18%

from BNL I \rightarrow II $$Q_{\rm slope}$$ Vs. Gradient to

proportionally increase

Improvements in cavity

treatment to go beyond

Copper & Niobium Cavities

Fabricated & tested 2004-05

Fabricated & tested 2005-06

HOM Damping, Cu

SPL Cavity, 704.4 MHz

¹/₂ Cell Length: 8 % change

Trans. Cavity Height: 0.8 % (15 mm)

Parameter	Unit	BNL 1(HC)	BNL 2 (HC)	SPL
E_p/E_a	-	1.96	2.34	2.54
H_p/E_a	[mT/MV/m]	5.73	4.69	5.14
R/Q	$[\Omega]$	825	920	756
dF/dR	[MHz/mm]	2.57	3.68	3.59
Cell-cell coupling	-	3%	4.68%	5.11%

Conclusions

- BNL type 704 MHz cavity for high currents in place
- Detailed study for optimum cavity design improvements proposed from 1^{st} cavity experience
- SPL 704 MHz cavity is a small modification (β -dependent)
- R&D on cold ferrites (80k) -or- "cold joints" can improve real estate gradient (~1-2 m for 2-3 cavities/cryostat)

Electron Cooler & SRF

RHIC Electron Cooling:

- High energy (54 MeV), high current, high charge
- Replenish *e*⁻ every cycle: Energy Recovery
- Very low emittance beams

Why 700 MHz

Choice of frequency:

- Surface resistance: $R_{BCS} + R_{residual}$
- Wakefields, HOMs $\, \propto \, 1/{
 m aperture} \,
 ightarrow 1/{
 m freq}$
- Availability of power sources, chemical treatment etc..

Design Criteria

Freq difference between mid & end cells important for multi-cell structures

no e-m fields at HOM couplers positions

Too many cells non-ideal for HOM damping

Graphic courtesy J. Sekutowicz

Backup: Field Flatness

First cavity gives excellent agreement without any tuning

Loss Factors

HOM Damping Measurements

Frequency [GHz]

Backup: Mechanical Analysis

Courtesy AES

Backup: Multipacting

Backup: Coupler Kicks

- Large beam-pipe, natural remedy
- Opposing couplers -or- stub -or- alternating couplers to make the transverse kick negligible

Static & Dynamic Tuning

Corrections:

- Chemical treatment & retuning
- $300k \rightarrow 2k$ contraction
- Lorentz force detuning (static, ...)
- Microphonics, hysteresis, ...