SPL RF Frequency Choice: **Cavity Scaling Considerations**

Cryogenics, RF superconductivity, 2K-4.5K, \$\$\$,...

(Most) presented ideas developed in the framework of the LEP2 sc. cavity design studies (partly unpublished) ...

-> acknowledgements to **Ernst Haebel** and **Philippe Bernard**

(both retired)

(<— still roaming ...) Brontosaurus superconductus altafrequencis

SPL-f-Review 30/4/08

are mine ...

J. Tückmantel, CERN AB-RF

Outline

 Pure scaling of cavities/couplers/...
 f —> 2·f (-> cavity length / 2)
 1a) ramifications (only perfect cavities)

2) Increase cell number (same cavity/couplers/..) N —> 2·N (—> recover 'old' cavity length)

2a) ramifications for <u>perfect</u> cavities

2b) ramifications for <u>real</u> cavities

– absolute 'calibration' with SNS simulations

2c) powering up cavities

2d) RF vector feedback

Conclusions

$$derived quantities(2)$$

$$\underbrace{Monopole (longitudinal) wakes}_{beam induced fields}$$

$$\Delta V_{ind}(cavity) = q \cdot \omega \cdot (R/Q)$$

$$\Delta V_{ind}(cavity) \cdot 2 = \Delta V_{ind}(cavity)$$

$$Longitudinal short range wakes/Lscale as f2
$$(\Delta V_{ind}/L) \cdot 4 = (\Delta V_{ind}/L)$$$$

Longitudinal long range wakes (fields with memory)

$$Z_{\parallel}(cavity) = (R/Q) \cdot Q_{ext}$$

$$Z_{\parallel}(cavity) = Z_{\parallel}(cavity)$$
Excitation independent independent independent

derived quantities(3)

$$\begin{array}{c} & & \\$$

Two aspects of the beam-cavity-interaction:

1) Beam Instabilities

No f_s nor f_β as in a circular machine: **an impedance <u>at any frequency</u> can excite the beam** -> creates its own 'line(s)' in modulating the beam (bunch position)

> <u>Also</u> impedances <u>far away from machine lines</u> can be <u>dangerous</u> concerning instabilities

Mode frequency scatter along the linac may save the day ..

An experienced linac beam expert should investigate ... train pattern, mode f, Q_{ext} ... scatter SNS @ 800 MHz, 6-cells: extensive studies (random !)

2) Power Extraction (Derivations —> Appendix)

- principal Machine Lines (ML): multiples of 350 MHz
- weak (<u>n/m ·350 MHz</u>) lines if bunch trains have a m-pattern
- 50 Hz train rate 'invisible': decisive envelope = 350 MHz ML
- <u>relat</u>. form-fact. ≥0.85 up to 5 GHz (<-- using info <u>A. Lombardi</u>)

Spectrum relatively more dense at 1400 MHz

Joachim Tückmantel, CERN-AB

$$P_{ext,cav}(\delta\omega) = \frac{2 \cdot (R/Q) \cdot Q_{ext} I_{b,DC}^2}{1 + (2\delta\omega Q_{ext}/\omega_{ML})^2}; \quad \delta\omega = \omega_{mod e} - \omega_{ML}$$

 $P_{ext,cav} \text{ scales } \textbf{f-independent} \iff \text{ for the same exiting beam } !! \\ \longrightarrow \text{ power-density in coupler *4, local fields (arcing) *2} \\ P_{ext,cav} \text{ is } \textbf{per cavity} \iff \text{ for the same exciting beam } !! \\ \longrightarrow \text{ total extracted HOM power *2} \\ P_{ext,cav} \text{ can become considerably, destroy coupler/load} \\ (there is no <u>principal limit for Q_{ext} as long as << Q_0)} \\ \underline{Example on resonance:} \\ I_{L,DC} = 40 \text{ mA, } (R/O) = 50 \Omega (e.g. TM_{out}), O_{ext} = 50000, \delta \omega = 0 \\ \end{bmatrix}$ </u>

 No **coincidence** with a principal **machine line** $(n \cdot 350 \text{ MHz})$ —> no 'over-power problem' expected

<u>'shifting' of modes :</u> not easy for 'all' modes- is a different problem at 700 and 1400 MHz

since beam spectrum does NOT scale !

-> cannot simply scale TESLA/ILC case as is:

ILC/FLASH : 1 rare BIG bunch (long time between bunches)

SPL/SNS/X : rapid sequence of SMALL bunches (as CBI)

Only safe way: guarantee damping : low Q_{ext}

- —> lower extracted power
- --> lower (long range) impedances

Q_{ext} transparent under f-scaling. How does it behave under cell-scaling ?

2*f —> double number of cavities, couplers, tuners, controllers, -> 2x \$\$ (*) ?

Avoid \$\$-increase: keep 'same' cavity length —> double number of cells N —> 2*N

(*) see e.g. Ph. Bernard, E. Chiaveri, J.T. : "Technical and Financial Implications of the frequency choice for a sc. accelerator section", Jan. <u>1996</u> (unpublished)

2a) Perfect cavities (same 'cell frequency' for ALL cells) ... including end-cells

N-cell cavity, mode m: $1 \le m \le N$ (regular) passband (see e.g. (*))

K=cell-to-cell coupling (K=0.85% LEP2) , ω_0 = cell basic frequency

(*) E. Haebel & J.T., CERN/EF/RF **81**-5 "Tuning of a …", Part 1 (theory) Joachim Tückmantel, CERN-AB

The <u>highest</u> passband mode(s): field amplitudes in cells

2b) Before entering 'imperfection statistics', some facts:
number of modes; only <u>a single bad one</u> can be sufficient to 'kill' above cut off frequency: propagation into next cavity/'warm' damping

Let's find the 'bad guy' and do something about it

HOM couplers (but also test antennas) are on the cut-off tubes (*)-> coupling depends ONLY on end-cell fields uniquely

• Modes with low end-cell field are potentially dangerous

-> the more dangerous -> the more <u>'invisible'</u> in bench-meas.

• R/Q and end-cell field-levels 'not' correlated

-> high peaks in bench measurement have high or low R/Q

-> no distinction for high R/Q in transmission test

?

(-> bead-pull: 'a mess' except lowest modes)

(*) experience from 500 MHz 5-cell cavity test —> never ports on cells Joachim Tückmantel, CERN-AB

Imperfect cavities (each cell has 'its own' frequency)

End-cell correction (tube!) done for accelerating mode (not HOMs!)
Cell-f scatter is intrinsic property of manufacturing process!!
—> have to 'cheat' for accelerating mode by individual cell tuning (include. f₀ tuning) after cavity fabrication of whole cavity.
HOMs have to accept 'what is' after the fundamental mode tuning

HEPL: differing end-cells: trapped modes <u>limited I_b far below specs</u> (no external HOM damping at all)

LEP2: The 'civilized' TM₀₁₂ mode (<u>low K</u>) had strong mode-mixing: 2 opposingly inclined field profiles (high at one, low at other end) —> put one HOM coupler on BOTH sides (also for dipoles) ... if dipole modes (2 polarisations !) have such a pattern ???

Stolen' from (Proc. LINAC06, Knoxville) J. Sekutowicz, HOM Damping and sc. Cavities

(calculated examples)

Figure 1: Example of mode trapping in a 13-cell cavity. End-cells and inner-cells have different frequencies for this resonant pattern. frequency-difference centre cells <-> end-cells

Figure 3: Shorter structures make trapping less probable.

less cells makes it better ...

Details: E. Haebel & J.T., CERN/EF/RF 81-5 "Tuning of a ...", Part 1 (theory)

Mode frequencies in passband

K=cell-to-cell coupling , ω_0 = cell basic frequency ('zero-mode')

$$\omega_n^2 = \omega_0^2 \cdot \left(1 + 2 K \cdot (1 - \cos(\pi \cdot n/N))\right) \implies \frac{1}{\omega_m^2 - \omega_k^2}$$

Distance of neighboring modes: smaller for more cells (larger N) Most critical close to zero and π mode

For compensation: increase cell-to-cell coupling K ?!?!

Problems:

Needs <u>wider iris opening</u> (for elliptical cavity: 'sc. holy cow')

-> lower R/Q (more cold He / MV)

--> higher E_{peak}/E_{acc} (field emission !!)

--> passbands get deformed ($d(\omega^2)/d\Theta=0$ -> mode mixing)

magnetic and electric coupling may cancel -> K=0 (which happens sometimes for 'higher HOMs' anyway)

Not a 'saves all' solution, can even become worse ...

'Calibration' with SNS simulations (R. Sundelin et al. PAC 91) Optimists live easier; here assume always worst case (*) ... (6-cell cavities @ 806 MHz, $I_{train} = 20 \text{ mA}$) Transverse instabilities OK, error magnifications acceptable Longitudinal instabilities OK if the loaded cavity Q for <u>each (*)</u> HOM is less than 10^8 Beam current SPL $*2 \rightarrow Q_{ext}/2$ Limit $5 \cdot 10^7$ all modes SPL @ 40 mA $f_{SPL} *2 \longrightarrow Z_{\perp} *4 \text{ need } Q_{ext}/4$: Limit $1.25 \cdot 10^7$ all modes SPL @1408 MHz, 5-cells 5-cell -> 10 cell: $Q_{ext}/2 \dots Q_{ext}/8$ perfect cavities Limit 1.6.10⁶ on 5-cell SPL (each HOM (*)) End-cell 'problem', fabrication tolerances, say worst factor 4 Limit $4 \cdot 10^5$ on 5-cell SPL (each HOM (*))

SPL is 2x as long as SNS \longrightarrow factor 2....

 $\underbrace{\text{Limit } 2 \cdot 10^5 \text{ on 5-cell SPL(each HOM (*))}}_{\text{Joachim Tückmantel, CERN-AB}} Q_{MC} \approx 10^6$ (*) Terrorist to FBI: You have to be <u>always</u> successful, we <u>only once</u> !

 $f_{b} = \underline{relative}$ bunch form factor; $f_{b} = 1$ for point-bunches

2d) Fast RF vector feedback considerations

The probe antenna (PA) should be on the cavity end opposing the main coupler (MC) (avoid cross-talk !!)
The polarity between MC and PA alternates along the (fundamental) passband modes (m) +-+-+-....
—> Modes with inverted (wrsp to acc. mode) polarity without special filters or the loop auto-oscillates on these f_m

In LEP times a few sc. LEP2-type 4-cell sc. cavities were also used in the SPS injector but had to be made invisible during the proton cycle by a **high gain RF vector feedback** (120 dB !!). Main problem for feedback:

separate 4 modes of fund. passband to prevent auto-oscillation and still act on these modes ('wide band' tetrode amplifier)

'Large box' full of (low power) RF components (\$\$\$), ..., watchmakeres's work, setting up was time intensive.

But still not possible to separate the accelerating π -mode (352.2 MHz) and the $3\pi/4$ mode at about 351.2 MHz (Δf = 1 MHz) by 'classical' means to sufficient attenuation.

Use trick: cable roll that was $M^*\lambda_{\pi}$ long for the π -mode and $(M-1/2)^*\lambda_{3\pi/4}$ long for the $3\pi/4$ mode, creating another factor (-1)

Worked well but demanding

—> if possible keep fundamental passband modes as far as possible apart in f and only few of them —> low cell number

Conclusion(1) : Threshold Current

Conclusion(2) : Other Aspects

stiffer <u>bare cavity</u> at higher f (same Nb sheet thickness)

(possibility to) **cool** (hook type) <u>HOM couplers</u> by conduction

1/4 wasted energy to <u>charge up cavity</u> before beam

complicating the fast <u>RF vector feedback design/prod./setting</u>

The decision 700/1400 MHz – conc. HOMs, impedances, .. – is **NOT a clear-cut engineering decision** but has aspects of **a stock-market type decision: risk against benefit**

the % numbers are purely accidental and any resemblance to Joachim Tückmantel, CERN-AB

Challenger Accident 28 Jan. 1986

On January 28, 1986 America was shocked by the destruction of the space shuttle Challenger, and the death

National Aeronautics and Space Administration

George C. Marshall Space Flight Centor Marshall Space Flight Center, Alabama 35812

EP25 (79-13)

January 19, 1979

TO: EE51/Mr. Eudy

FROM: EP25/Mr. Miller

SUBJECT: Evaluation of SRM Clevis Joint Behavior

As requested by your memorandum, EES1 (79-10), Thiokol documents TWR-12019 and letter 7000/ED-78-484 have been revaluated. We find the Thiokol position regarding design adequacy of the clevis joint to be completely unacceptable for the following reasons:

a. The large sealing surface gap created by excessive tang/clevis relative movement causes the primary D-ring seal to extrude into the gap, forcing the seal to function in a way which violates industry and Government D-ring application practices.

b. Excessive tang/clevis movement as explained above also allows the secondary 0-ring seal to become completely disengaged from its sealing surface on the tang.

c. Contract End Item Specification, CPW1-2500D, page I-28, paragraph 3.2.1.2 requires that the integrity of all high pressure case seals be verifiable; the clevis joint secondary O-ring seal has been verified by tests to be unsatisfactory.

Questions or comments concerning this memorandum should be referred to Mr. William L. Ray, 3-0459.

John Q. Miller

Chief, Solid Motor Branch

First warning on deficient seal: Jan. 1979

when politics, 'bean counting', collides with 'too conservative' engineers ...

Thank you for your attention!

Appendix: Induced voltage, impedance extracted power

Appendix: Induced voltage, impedance, extracted power Induced voltage by single <u>bunch train of M bunches:</u> regular <u>inter-bunch</u> time T_B; mode <u>frequency</u> \omega; <u>FIELD</u> damping time \tau_F = 2\omega/Q_{tot}

<u>Example</u>: f=2GHz, Q_{ext} =100 -> τ_F = 16 ns >> T_B =2.8 ns (352MHz) bunches are 'always' coupled --> (only) 352 MHz multiples are true 'machine lines'

1) 'strong' damping = field mainly decays during $T_B : T_B / \tau_F$ 'large'

$$q = \exp\left[(i\omega - 1/\tau_F) \cdot T_B\right] = \varepsilon \cdot \exp(i\omega \cdot T_B); \quad \varepsilon = \exp(T_B/\tau_F) <<1$$

(1-q) does not get close to zero: **<u>no resonant effect</u>**

2) 'week' damping: field mainly 'survives' during $T_B : T_B/\tau$ 'small' i.e. $exp(T_B/\tau_F) \approx 1$ If also f close to multiple of $1/T_B = 352$ MHz: $(\omega - \delta \omega)T_B = 2\pi \cdot n$ \longrightarrow use $exp(x) \approx 1 + x$ for small |x|

$$V_{\infty} = \frac{\Delta V}{1 - \rho} = \frac{q \cdot \omega \cdot (R/Q)}{1 - \exp\left[(i\omega - 1/\tau_F) \cdot T_B\right]} \approx \frac{q}{T_B} \frac{\omega \cdot (R/Q)}{i\delta\omega \cdot -1/\tau_F}$$

'stable field' (no large 'ripple')

(1-q) gets close to zero at any ML ($f=n/T_B$) : resonant effect

Extracted power:

to be transported by the <u>coupler</u> and digested by the <u>load</u> and replaced by the <u>accelerating field</u>

For 'stable field' $P_{ext}(\delta\omega) = \frac{|V_{\infty}|^{2}}{2 \cdot (R/Q) \cdot Q_{ext}} = \frac{2 \cdot (R/Q) \cdot Q_{ext}}{1 + (2\delta\omega Q_{ext}/\omega)^{2}}$ $P_{ext} \text{ is } \omega \text{-independent: coupler P-density *4, fields (arcing) *2 !!}$ $P_{ext} \text{ is } \omega \text{-independent: coupler P-density *4, fields (arcing) *2 !!}$

¹ Ernst Haebel got 'ballistic' each time that this 'fact' was 're-discovered' about all 2 years by new people (joining the field)

Extracted power can be smaller for higher Q_{ext} for 'larger' $\delta \omega$ BUT: <u>induced cavity field</u>, U_{st} <u>always larger</u> for higher Q_{ext}

Energy conservation, NO power conservation: higher Q_{ext} confines stripped beam energy longer in cavity; possible coupling train to train This field (energy)

- may decelerate coming particles more: more stripped beam energy
- changes $V_{acc,tot}$ unpredictable (RF feedback only on main mode)
- makes additional cryo losses
- sneaks over MC and circulator (built for f_0) to klystron

Joachim Tückmantel, CERN-AB

If field is not stable ('ripple') <u>average power</u> (over repetition period T_R) has to be expressed as

$$\langle P_{ext} \rangle = \frac{1}{T_R} \int_0^{T_R} dt \cdot P_{ext}(t) = \frac{1}{2 \cdot (R/Q) \cdot Q_{ext} \cdot T_R} \int_0^{T_R} dt \cdot |V(t)|^2$$

For SPL (except very high Q_{ext} modes) bunch-trains are separated ($T_R = T_T$) and about 'rectangular power profile'

$$\left\langle P_{ext} \right\rangle \approx d \frac{2 \cdot (R/Q) \cdot Q_{ext} I_{b,on train}^2}{1 + (2\delta \omega Q_{ext}/\omega)^2}$$

d=duty-cycle (5%) $I_{b,on train} = q/T_B$ the current during the pulse (40 mA... 64 mA)