## SPL RF Frequency Choice: Cavity Scaling Considerations

## Cryogenics, RF subercouducening, 2K-4.5K, \$\$\$...

(Most) presented ideas developed in the framework of the LEP2 sc. cavity design studies (partly unpublished) ... -> acknowledgements to Ernst Haebel and Philippe Bernard
... but any errors in this talk are mine ...

(<- still roaming ...)
Brontosaurus superconductus altafrequencis

## Outline

1) Pure scaling of cavities/couplers/...
$\mathrm{f} \longrightarrow 2 \cdot \mathrm{f} \quad(\longrightarrow$ cavity length / 2)
1a) ramifications (only perfect cavities)
2) Increase cell number (same cavity/couplers/..)
$\mathbf{N} \longrightarrow 2 \cdot \mathbf{N}(\longrightarrow$ recover 'old' cavity length $)$
2a) ramifications for perfect cavities
2b) ramifications for real cavities

- absolute 'calibration' with SNS simulations

2c) powering up cavities
2d) RF vector feedback
Conclusions

## 1a) Scaled - else identical - perfect cavities

Scaling of some RF/beam quantities for same local fields


| L area volume | fundamental quantities | L/2 <br> Area/4 <br> Volume/8 |
| :---: | :---: | :---: |
|  |  |  |
|  |  |  |
| f |  | $2 \cdot f$ |
| $\mathbf{V}_{\text {acc }}\left(\mathbf{v}_{\text {part }}\right.$ | -> trivially .. | $\mathrm{V}_{\mathrm{acc}} / 2$ ( |
| $\mathbf{U s t}_{\text {st }}$ |  | $\mathrm{U}_{\mathrm{st}} / \mathbf{8}$ |

## same local fields


$\left(\frac{R}{Q}\right)_{\|}=\frac{1}{2} \frac{V^{2}}{\omega \cdot U_{s t}} \quad \begin{aligned} & \text { Excitation } \\ & \text { independent }\end{aligned}$

$$
\left(\frac{R}{Q}\right)_{\|}=\frac{1}{2} \frac{(V / 2)^{2}}{(2 \cdot \omega) \cdot\left(U_{s t} / 8\right)}=\left(\frac{R}{Q}\right)_{\|}
$$

antenna HOM coupler $P_{\text {ext }}=\frac{1}{2} I_{\text {coup }}^{2} \cdot Z_{\text {Line }} ; \quad I_{\text {coup }}=A_{\text {plate }} \cdot i \omega \cdot E_{\text {plate }}$ loop HOM coupler $\quad P_{\text {ext }}=\frac{1}{2} V_{\text {coup }}^{2} / Z_{\text {Line }} ; \quad V_{\text {coup }}=A_{\text {loop }} \cdot i \omega B_{R F}$
resistive material

$$
d P_{\mathrm{int}} / d A \propto E^{2} \propto B^{2} ; \quad P_{\mathrm{int}} \propto A
$$

$$
\text { always } P_{\text {lost }} / 4=P_{\text {lost }} \Leftrightarrow \text { for equivalent local fields!! }
$$

$$
Q_{e x t}=\frac{\omega U_{s t}}{P_{e x t}}
$$

Excitation independent

$$
Q_{e x t}=\frac{\left(2 \cdot \omega \cdot U_{s t} / 8\right)}{P_{e x t} / 4}=Q_{e x t}
$$

$$
\text { sc. cav: } Q_{0} \ggg Q_{e x t} \Rightarrow Q_{t o t}=Q_{\mathrm{ext}}
$$

derived quantities(2)

## Monopole (longitudinal) wakes

$\Delta V_{\text {ind }}($ cavity $)=q \cdot \omega \cdot(R / Q) \quad \Delta V_{\text {ind }}($ cavity $) \cdot 2=\Delta V_{\text {ind }}($ cavity $)$

## Longitudinal short range wakes/L scale as ${ }^{2}{ }^{2}$

$$
\left(\Delta V_{\text {ind }} / L\right) \cdot 4=\left(\Delta V_{\text {ind }} / L\right)
$$

Longitudinal long range wakes (fields with memory)

$$
Z_{\|}(\text {cavity })=(R / Q) \cdot Q_{e x t}
$$

$$
Z_{\|}(\text {cavity })=Z_{\|}(\text {cavity })
$$

Excitation

## Longitudinal long range wakes/L scale as $\mathbf{f}$

$$
\left(Z_{\|} / L\right) \cdot 2=\left(Z_{\|} / L\right)
$$



## derived quantities(3)

## Dipole wakes:

(close axis) $\underline{E}_{\|}$prop. to $\mathrm{x}\left(->\mathrm{E}_{\| \mid}(0)=0\right)$

For same local fields and the SAME UNSCALED offset $\mathbf{x}$

| $E_{\text {local }}(x) \cdot 2$ | $=E_{\text {local }}(x) \quad$ hence $V_{\text {acc }}(x)=V_{\text {acc }}(x)$ |
| ---: | :--- |
| $\omega U_{s t} / 4$ | $=\omega U_{s t} \Rightarrow(R / Q)_{\\|}(x) \cdot 4=(R / Q)_{\\|}(x)$Excitation <br> independent |

beam induced $\quad V_{\|, \text {ind }}(x)=I_{B, R F} \cdot(R / q)_{\|}(x) \cdot Q_{\text {ext }} V_{\| \|}(x) \cdot 4=V_{\|}(x)$

Panofsky-Wenzel: $\Delta p_{x}=-\frac{i \cdot e}{\omega} \cdot \frac{\partial V_{\|}}{\partial x}$

$$
\begin{aligned}
& \Delta p_{x} / L \cdot 4=\Delta p_{x} / L \\
& \left(Z_{\perp} / L\right) \cdot 4=\left(Z_{\perp} / L\right) \\
& \begin{array}{l}
\text { Excitation } \\
\text { independent }
\end{array} \\
&
\end{aligned}
$$

## Pure scaling of cavities/couplers/... by $f \longrightarrow 2 \cdot f$



Transverse kicks/L (same offset) scale as $\mathbf{f}^{\mathbf{2}}$ (e.g. CEBAF design report)

## $\rightarrow$ beam break-up threshold current scales as $1 / \mathrm{f}^{2}$ becomes 1/4 = 25\%

## Two aspects of the beam-cavity-interaction:

## 1) Beam Instabilities

No $f_{s}$ nor $f_{\beta}$ as in a circular machine:
an impedance at any frequency can excite the beam
$\rightarrow$ creates its own 'line(s)' in modulating the beam (bunch position)
Also impedances far away from machine lines can be dangerous concerning instabilities

Mode frequency scatter along the linac may save the day ..

> An experienced linac beam expert should investigate ... train pattern, mode $f, Q_{\text {ext }} \ldots$ scatter
> SNS @ $800 \mathrm{MHz}, 6$-cells: extensive studies (random !)

## 2) Power Extraction

(Derivations —> Appendix)

- principal Machine Lines (ML): multiples of 350 MHz
- weak ( $\mathrm{n} / \mathrm{m} \cdot 350 \mathrm{MHz}$ ) lines if bunch trains have a m-pattern
-50 Hz train rate 'invisible': decisive envelope $=350 \mathrm{MHz} \mathrm{ML}$
- relat. form-fact. $\geq 0.85$ up to 5 GHz ( $<-$ using info A. Lombardi)


Spectrum relatively more dense at 1400 MHz

$$
P_{e x t, c a v}(\delta \omega)=\frac{2 \cdot(R / Q) \cdot Q_{e x t} I_{b, D C}^{2}}{1+\left(2 \delta \omega Q_{e x t} / \omega_{M L}\right)^{2}} ; \quad \delta \omega=\omega_{\bmod e}-\omega_{M L}
$$

$\mathrm{P}_{\text {ext,cav }}$ scales $\mathbf{f}$-independent $\Leftrightarrow$ for the same exiting beam !! $\longrightarrow$ power-density in coupler $* 4$, local fields (arcing) $* 2$
$\mathrm{P}_{\text {ext,cav }}$ is per cavity $\Leftrightarrow$ for the same exciting beam !!
$\rightarrow$ total extracted HOM power $* 2$
$\mathrm{P}_{\text {ext,cav }}$ can become considerably, destroy coupler/load
(there is no principal limit for $\mathrm{Q}_{\text {ext }} \ldots$... as long as $\ll \mathrm{Q}_{0}$ )
Example on resonance:
$I_{b, D C}=40 \mathrm{~mA},(\mathrm{R} / \mathrm{Q})=50 \Omega\left(\right.$ e.g. $\left.\mathrm{TM}_{011}\right), \mathrm{Q}_{\mathrm{ext}}=50000, \underline{\delta \omega=0}$
$\mathrm{P}_{\text {ext,cav }}=8 \mathrm{~kW}$ 'equilibr. on train' $/ 0.9 \mathrm{kV}$ on $50 \Omega$ line
$\left\langle\mathrm{P}_{1}\right\rangle=8 \mathrm{~kW}$ *duty-factor(5\%) $->400 \mathrm{~W}$ (.. tolerable ..)
$\mathbf{V}_{\text {HOM,cav }}=-\mathbf{0 . 2} \mathrm{MV}$ (in equilibrium): about $1 \%$ of $\mathrm{V}_{\text {acc }}$
$\rightarrow \mathbf{1 \%}$ voltage swing at start of train
$\left\{\right.$ LHC has $15 * \mathbf{I}_{\mathrm{b}, \mathrm{DC}}$, duty-f. $\left.=1 \longrightarrow \leq \mathrm{P}_{1}>=1800 \mathrm{~kW} \underset{\sim}{\otimes}\right\}$

No coincidence with a principal machine line ( $\mathrm{n} \cdot 350 \mathrm{MHz}$ ) $\longrightarrow$ no 'over-power problem' expected
'shifting' of modes : not easy for 'all' modes

- is a different problem at 700 and 1400 MHz since beam spectrum does NOT scale!
$\rightarrow$ cannot simply scale TESLA/ILC case as is:
$\rightleftharpoons$ ILC/FLASH : 1 rare BIG bunch (long time between bunches) SPL/SNS/X : rapid sequence of SMALL bunches (as CBI)
Only safe way: guarantee damping : low $Q_{\text {ext }}$
$\rightarrow$ lower extracted power
$\rightarrow$ lower (long range) impedances
> $\mathrm{Q}_{\text {ext }}$ transparent under f-scaling. How does it behave under cell-scaling ?


# 2*f $\rightarrow$ double number of cavities, couplers, tuners, controllers,...$\longrightarrow 2 x \$\left({ }^{*}\right)$ ? 

## Avoid \$\$-increase: keep 'same' cavity length $\longrightarrow$ double number of cells $\mathbf{N} \longrightarrow 2 * N$


(*) see e.g. Ph. Bernard, E. Chiaveri, J.T. : "Technical and Financial Implications of the frequency choice for a sc. accelerator section", Jan. 1996 (unpublished)

## 2a) Perfect cavities (same 'cell frequency' for ALL cells)

... including end-cells ....
N -cell cavity, mode $\mathrm{m}: \quad 1 \leq \mathrm{m} \leq \mathrm{N}$ (regular) passband (see e.g. (*))
$\mathrm{K}=$ cell-to-cell coupling ( $\mathrm{K}=0.85 \% \mathrm{LEP} 2$ ) , $\omega_{0}=$ cell basic frequency


For mode m (rel.) amplitude in cell n
cell amplitudes vector for mode m

$$
\begin{aligned}
& \omega_{m}^{2}=\omega_{0}^{2} \cdot(1+2 \cdot K \cdot(1-\cos (\pi \cdot m / N)) \\
& \Theta_{m}=\pi \cdot \frac{m}{N} \quad \text { TW cell-to-cell phase advance } \\
& a_{n}^{m}=\sin \left(\pi \cdot \frac{m}{N} \cdot(n-1 / 2)\right.
\end{aligned}
$$

$$
A^{(m)}=\left\{a_{1}^{m}, a_{2}^{m}, \ldots, a_{N-1}^{m}, a_{N}^{m}\right\}
$$

(*) E. Haebel \& J.T., CERN/EF/RF 81-5 "Tuning of a ...", Part 1 (theory)

## The highest passband mode(s): field amplitudes in cells


cell 1 $P_{\text {ext }} / \mathrm{U}_{\mathrm{st}}$ ratio : 2:1, same $\omega \longrightarrow \mathrm{Q}_{\mathrm{ext}}=\mathrm{U}_{\mathrm{st}} / \omega \mathrm{P}_{\mathrm{ext}} \quad 1: 2$

## The lowest passband mode(s): field amplitudes in cells

 5-cell cavity $(\pi / 5) \quad$ norm: $\mathrm{U}_{\text {st }}=1 \quad 10$-cell cavity $(\pi / 10)$

## $\mathrm{P}_{\text {ext }} / \mathrm{U}_{\mathrm{st}}$ ratio : 8:1, same $\omega, \rightarrow \mathrm{Q}_{\mathrm{ext}}=\mathrm{U}_{\mathrm{st}} / \omega \mathrm{P}_{\mathrm{ext}} \quad 1: 8$

$\mathrm{Q}_{\mathrm{ext}, \pi}=\mathrm{Q}_{\mathrm{ex}, \pi / 5} \approx 1: 5$


Scaling of cavities/couplers/... by $f \longrightarrow 2 \cdot f$ and cell number $\mathrm{N} \longrightarrow 2 \cdot \mathrm{~N}$

$\checkmark$ (perfect cavities, no end-cell-problem, no $f$-scatter)

$$
\begin{aligned}
Q_{e t t} \cdot 2 \ldots .8 & =Q_{e x t} \\
\left(Z_{\|} / L\right) \cdot 4 \ldots 16 & =\left(Z_{\|} / L\right) \\
\left(Z_{\perp} / L\right) \bullet 8 \ldots 32 & =\left(Z_{\perp} / L\right)
\end{aligned}
$$

## 2b) Before entering 'imperfection statistics', some facts:

 $\infty$ number of modes; only a single bad one can be sufficient to 'kill' above cut off frequency: propagation into next cavity/'warm' damping
## Let's find the 'bad guy' and do something about it ...

HOM couplers (but also test antennas) are on the cut-off tubes (*)
-> coupling depends ONLY on end-cell fields uniquely

- Modes with low end-cell field are potentially dangerous
$->$ the more dangerous $->$ the more 'invisible' in bench-meas.
- R/Q and end-cell field-levels 'not' correlated
$->$ high peaks in bench measurement have high or low R/Q
$\rightarrow$ no distinction for high R/Q in transmission test
( $->$ bead-pull: 'a mess' except lowest modes)
(*) experience from 500 MHz 5 -cell cavity test $\longrightarrow$ never ports on cells


## Imperfect cavities (each cell has 'its own' frequency)

End-cell correction (tube!) done for accelerating mode (not HOMs!)
Cell-f scatter is intrinsic property of manufacturing process!!
$\longrightarrow$ have to 'cheat' for accelerating mode by individual cell tuning (include. $\mathrm{f}_{0}$ tuning) after cavity fabrication of whole cavity.
HOMs have to accept 'what is' after the fundamental mode tuning
different cell frequency

Trapped mode(s)


HOM coupler 'feel' (end-cell field) ${ }^{2}$ only !!!
If 'strong' coupling (K) end-cell oscillate a little bit $\longrightarrow$ high $\mathrm{Q}_{\mathrm{ext}}$ If 'weak' coupling (K) end-cell do 'not' oscillate $\longrightarrow$ very high $Q_{\text {ext }}$

## Trapped Modes $\longrightarrow$ Mode Mixing


ideal cavities: 'ideal modes'

trapped
HEPL: differing end-cells: trapped modes limited $\mathbf{I}_{\underline{b}} \underline{\text { far below specs }}$ (no external HOM damping at all)
LEP2: The 'civilized' $\mathrm{TM}_{012}$ mode (low K) had strong mode-mixing: 2 opposingly inclined field profiles (high at one, low at other end) $\rightarrow$ put one HOM coupler on BOTH sides (also for dipoles) ... if dipole modes ( 2 polarisations !) have such a pattern ???
'Stolen' from (Proc. LINAC06, Knoxville)
J. Sekutowicz, HOM Damping and .... sc. Cavities (calculated examples)

Location of HOM couplers

frequency-difference centre cells <-> end-cells

Figure 1: Example of mode trapping in a 13-cell cavity. End-cells and inner-cells have different frequencies for this resonant pattern.


## less cells makes it better ...

Figure 3: Shorter structures make trapping less probable.

Perturbation theory 'stolen' from
Diagonal perturbation operator $\mathbf{P}$ : relative cell frequency errors
using cell index
$\delta\left(\omega_{k}^{2}\right) / \omega_{0}^{2} \approx \quad P=2$.
$2 \cdot \delta \omega_{k} / \omega_{0}$
$(\mathbf{H}+\mathbf{P})(\psi+\delta \psi)=<$
$(\mathrm{E}+\mathrm{dE})(\psi+\delta \psi)$
Then the perturbations in the eigenvectors $=$ mode cell-field-levels are determined in QM lingo as

$$
\left|\delta \psi_{m}\right\rangle=\left|\delta a^{(m)}\right\rangle=\sum_{k \neq m}^{N} \frac{\left\langle a^{(k)}\right| P\left|a^{(m)}\right\rangle}{\left\langle a^{(k)} \mid a^{(k)}\right\rangle} \frac{\omega_{m}^{2}}{\omega_{m}^{2}-\omega_{k}^{2}}\left|a^{(k)}\right\rangle
$$

(change to 'new' $\mathrm{a}^{(\mathrm{m})}$ by component of $\mathrm{a}^{(\mathrm{k})}$

## Decisive factor for 'mode mixing' $\longrightarrow$ 'trapped modes'

Details: E. Haebel \& J.T., CERN/EF/RF 81-5 "Tuning of a ...", Part 1 (theory) Joachim Tückmantel, CERN-AB

Mode frequencies in passband
$\mathrm{K}=$ cell-to-cell coupling , $\omega_{0}=$ cell basic frequency ('zero-mode')

$$
\omega_{n}^{2}=\omega_{0}^{2} \cdot\left(1+2 K \cdot(1-\cos (\pi \cdot n / N)) \Rightarrow \frac{1}{\omega_{m}^{2}-\omega_{k}^{2}}\right.
$$

Distance of neighboring modes: smaller for more cells (larger N ) Most critical close to zero and $\pi$ mode



$$
\begin{gather*}
\omega_{m}^{2}-\omega_{m-1}^{2}=2 K \cdot \omega_{0}^{2}(\cos (\pi \cdot(m-1) / N)-\cos (\pi \cdot m / N))= \\
4 K \cdot \omega_{0}^{2} \cdot \sin (\pi / 2 N) \cdot \sin (\pi \cdot(m-1 / 2) / N) \propto 1 / N
\end{gather*}
$$

$$
\text { especially } \omega_{N}^{2}-\omega_{N-1}^{2}=\omega_{1}^{2}-\omega_{0}^{2}=4 K \cdot \omega_{0}^{2} \cdot[\sin (\pi / 2 N)]^{2} \propto 1 / N^{2}
$$

## Scaling of cavities/couplers/... by $f \longrightarrow 2 \cdot f$ and cell number $\mathrm{N} \longrightarrow 2 \cdot \mathrm{~N}$ <br> ( $\rightarrow$ Loss of $\mathrm{I}_{\mathrm{th}}$ by factor $1 / 8 \ldots 1 / 32$ ) and assuming real production scatter

Production scatter $->$ origin of field-flatness problem $\rightarrow>$ trapped mode


Sensitivity per $\delta \omega / \omega_{0}$ : ' 1 '

## For compensation:

 increase cell-to-cell coupling $\mathbb{K}$ ?!?!
## Problems:

Needs wider iris opening (for elliptical cavity: 'sc. holy cow')
$\rightarrow$ lower R/Q (more cold He / MV)
$\longrightarrow$ higher $\mathbf{E}_{\text {peak }} / \mathrm{E}_{\text {acc }}$ (field emission !!)
$\longrightarrow$ passbands get deformed $\left(\mathbf{d}\left(\omega^{2}\right) / d \Theta=0 \rightarrow>\right.$ mode mixing)
magnetic and electric coupling may cancel $\rightarrow \mathbf{K}=0$
(which happens sometimes for 'higher HOMs' anyway)

Not a 'saves all' solution, can even become worse ...

## 'Calibration' with SNS simulations (R. Sundelin et al. PAC 91)

Optimists live easier; here assume always worst case (*) ...
(6-cell cavities @ $806 \mathrm{MHz}, \mathrm{I}_{\text {train }}=\mathbf{2 0} \mathbf{~ m A}$ )
Transverse instabilities OK, error magnifications acceptable ....
Longitudinal instabilities OK ....
.... if the loaded cavity Q for each ${ }^{(*)} \mathbf{H O M}$ is less than $\mathbf{1 0}^{8}$
Beam current SPL *2 -> $\mathrm{Q}_{\text {ext }} / 2$
Limit $5 \cdot 10^{7}$ all modes SPL @ 40 mA
$\mathrm{f}_{\mathrm{SPL}} * 2 \longrightarrow \mathrm{Z}_{\perp} * 4$ need $\mathrm{Q}_{\mathrm{ext}} / 4$ :
Limit $1.25 \cdot 10^{7}$ all modes SPL @ 1408 MHz , 5-cells
5-cell -> 10 cell: $\mathrm{Q}_{\mathrm{ext}} / 2 \ldots \mathbf{Q}_{\mathrm{ext}} / \mathbf{8}$ perfect cavities Limit $1.6 \cdot 10^{6}$ on 5-cell SPL (each HOM $\left.{ }^{*}{ }^{*}\right)$ )
End-cell 'problem', fabrication tolerances, say worst factor 4
Limit $4 \cdot 10^{5}$ on 5-cell SPL (each HOM (*) 2
SPL is 2 x as long as SNS $\longrightarrow$ factor $2 \ldots$
Limit $2 \cdot 10^{5}$ on 5-cell SPL(each HOM $\left.{ }^{*}{ }^{*}\right)$ ) $\quad \mathrm{Q}_{\mathrm{MC}} \approx 10^{6}$
(*) Terrorist to FBI: You have to be always successful, we only once !
2c) Powering up Cavities (before beam)


$$
Q_{e x x, o p t}=\frac{V}{2(R / Q) I_{b, D C} f_{b} \sin (\phi)}
$$

$$
\left(\frac{R}{Q}\right)_{\|} \cdot 2=\left(\frac{R}{Q}\right)_{\|}
$$

$$
Q_{e x t, \text { opt }} / 2=Q_{\text {ext,opt }}
$$

$$
\tau_{\text {fill }}=Q_{\text {ext }} / \omega
$$

$$
P_{p u m p}=\frac{V_{\text {equil }}^{2}}{2(R / Q) Q_{e x t}}
$$

$$
\tau_{\text {fill }} / 4=\tau_{\text {fill }}
$$

$$
P_{p u m p}=P_{p u m p}
$$

$$
U_{\text {fill,waste }}=\int_{0}^{\eta \cdot \tau_{\text {fil }}} P_{\text {pump }} d t \Rightarrow U_{\text {fill,waste }} / 4=U_{\text {fill,waste }}
$$

$f_{b}=\underline{\text { relative }}$ bunch form factor; $f_{b}=1$ for point-bunches

## 2d) Fast RF vector feedback considerations

-The probe antenna (PA) should be on the cavity end opposing the main coupler (MC) (avoid cross-talk !!)

- The polarity between MC and PA alternates along the (fundamental) passband modes (m) $+-+-+-\ldots$. $\longrightarrow$ Modes with inverted (wrsp to acc. mode) polarity without special filters or .... the loop auto-oscillates on these $f_{m}$

In LEP times a few sc. LEP2-type 4-cell sc. cavities were also used in the SPS injector but had to be made invisible during the proton cycle by a high gain $\mathbf{R F}$ vector feedback ( 120 dB !!).

Main problem for feedback:
separate 4 modes of fund. passband to prevent auto-oscillation and still act on these modes ('wide band' tetrode amplifier)
'Large box’ full of (low power) RF components (\$\$\$), ...., watchmakeres's work, setting up was time intensive.

But still not possible to separate the accelerating $\pi$-mode ( 352.2 MHz ) and the $3 \pi / 4$ mode at about $351.2 \mathrm{MHz}(\Delta \mathrm{f}=1 \mathrm{MHz}$ ) by 'classical' means to sufficient attenuation.

Use trick: cable roll that was $\mathrm{M} * \lambda_{\pi}$ long for the $\pi$-mode and $(\mathrm{M}-1 / 2) * \lambda_{3 \pi / 4}$ long for the $3 \pi / 4$ mode, creating another factor (-1)

Worked well but demanding ....
$\rightarrow$ if possible keep fundamental passband modes as far as possible apart in $f$ and only few of them $\longrightarrow$ low cell number

## Conclusion(1) : Threshold Current



## Conclusion(2) : Other Aspects

stiffer bare cavity at higher f (same Nb sheet thickness)
$\because$ (possibility to) cool (hook type) $\underline{\text { HOM couplers }}$ by conduction
( $1 / 4$ wasted energy to charge up cavity before beam
(0.) complicating the fast RF vector feedback design/prod./setting

The decision $700 / 1400 \mathrm{MHz}$ - conc. HOMs, impedances, .. - is NOT a clear-cut engineering decision but has aspects of a stock-market type decision: risk against bencfit

the \% numbers are purely accidental and any resemblance to ....

## Challenger Accident 28 Jan. 1986



TO: EEST/Mr. Eudy
FROIA: EP25/Mr. Miller
SUBJECT: Evaluation of SRM Clevis Joint Behavior
As requested by your memorandum, EE51 (79-10), Thiokol documents the Thiokal position regarding design adequacy of the clevis joint to be completely unacceptable for the following reasons:
a. The large sealing surface gap created by excessive tang/clevis relative movenent causes the primary 0 -ring seal to extrude into the gap, forcing the seal to function in a way which violates industry and
Governient 0 -ring application practices.
b. Excessive tang/clevis movement as explained above also allows the secondary 0 -ring seal to becone conipletely disengaged from its sealing surfoce on the tang.
c. Contract End Item Specification, CPW1-2500D, page I-28, paragraph 3.2.1.2 requires that the integrity of all high pressure case seals be verifiable; the clevis joint secondary 0 -ring seal has been verified by tests to be unsatisfactory
Questions or comments concerning this memorandum should be referred $\ddagger 0$ Ar. William L. Ray, 3-0459.
Qim (kinivin
Chief, Solid Motor Branch
On January 28, 1986 America was shocked by the destruction of the space shuttle Challenger, and the death
First warning on deficient seal: Jan. 1979

## when politics, 'bean counting',

 collides with 'too conservative' engineers ...

# Thaunk you for your attention! 

## Appendix:

Induced voltage, impedance extracted power


## Appendix: Induced voltage, impedance, extracted power

Induced voltage by single bunch train of $M$ bunches: regular inter-bunch time $\mathrm{T}_{\mathrm{B}}$; mode frequency $\omega$;
FIELD damping time $\tau_{F}=2 \omega / Q_{\text {tot }}$
Relative bunch form factor [0, 1] versus f in $[0,5 \mathrm{GHz}$ ]
A. Lombardi : $4 \sigma-\mathrm{BL} \pm 4.5^{\circ} @ 352 \mathrm{MHz}$. No relief: $\mathrm{f}_{\mathrm{B}} \approx 1$
$\rightarrow$ short bunches
$\Delta \mathbf{V}=\mathrm{q} \omega(\mathbf{R} / \mathbf{Q})$ per bunch (scales with $\mathrm{f}!!$ )

$$
\begin{aligned}
V_{M}= & \Delta V \cdot \sum_{m=0}^{m=M-1} \exp \left[\left(i \omega-1 / \tau_{F}\right) \cdot T_{B} \cdot m\right]=\Delta V \cdot \sum_{m=0}^{m=M-1} \rho^{m}=\Delta V \cdot \frac{1-\rho^{M}}{1-\rho} \\
\rho= & \exp \left[\left(i \omega-1 / \tau_{F}\right) \cdot T_{B}\right] \quad(\text { geometrical series }|\rho|<1) \\
& \quad \text { if train - length } M \cdot T_{B} \gg \tau_{F}: \rho^{M} \rightarrow 0 \quad V_{M}=V_{\infty}=\frac{\Delta V}{1-\rho}
\end{aligned}
$$

Example: $\mathrm{f}=2 \mathrm{GHz}, \mathrm{Q}_{\mathrm{ext}}=\mathbf{1 0 0} \rightarrow \boldsymbol{\tau}_{\mathrm{F}}=\mathbf{1 6} \mathbf{n s} \gg \mathrm{T}_{\mathrm{B}}=\mathbf{2 . 8} \mathbf{n s}(352 \mathrm{MHz})$
bunches are 'always' coupled $->$ (only) 352 MHz multiples are true 'machine lines'

1) 'strong' damping $=$ field mainly decays during $T_{B}: T_{B} / \tau_{F}{ }^{\text {'large' }}$

$$
q=\exp \left[\left(i \omega-1 / \tau_{F}\right) \cdot T_{B}\right]=\varepsilon \cdot \exp \left(i \omega \cdot T_{B}\right) ; \quad \varepsilon=\exp \left(T_{B} / \tau_{F}\right) \ll 1
$$


(1-q) does not get close to zero: no resonant effect
2) 'week' damping: field mainly 'survives' during $\mathrm{T}_{\mathrm{B}}: \mathrm{T}_{\mathrm{B}} / \tau$ 'small' i.e. $\quad \exp \left(T_{B} / \tau_{F}\right) \approx 1$

If also f close to multiple of $1 / \mathrm{T}_{\mathrm{B}}=352 \mathrm{MHz}:(\omega-\delta \omega) \mathrm{T}_{\mathrm{B}}=2 \pi \cdot \mathrm{n}$
$\rightarrow$ use $\exp (x) \approx 1+x$ for small $|x|$
$V_{\infty}=\frac{\Delta V}{1-\rho}=\frac{q \cdot \omega \cdot(R / Q)}{1-\exp \left[\left(i \omega-1 / \tau_{F}\right) \cdot T_{B}\right]} \approx \frac{q}{T_{B}} \frac{\omega \cdot(R / Q)}{i \delta \omega \cdot-1 / \tau_{F}}$
‘stable field’ (no large 'ripple')
(1-q) gets close to zero at any ML $\left(\mathrm{f}=\mathrm{n} / \mathrm{T}_{\mathrm{B}}\right): \underline{\text { resonant effect }}$
express $\tau$ by $\mathrm{Q}_{\text {tot }}=\mathrm{Q}_{\mathrm{ext}}$, and $\mathrm{q} / \mathrm{T}_{\mathrm{B}}=\mathrm{I}_{\mathrm{b}, \mathrm{DC}} \quad \mathrm{I}_{\mathrm{RF}}=2^{*} \mathrm{I}_{\mathrm{b}, \mathrm{DC}}$

$$
V_{\infty} \approx 2 \cdot I_{b, D C}^{4} \frac{(R / Q) \cdot Q_{\text {ext }}}{i \cdot\left(2 \cdot \delta \omega \cdot Q_{e x t} / \omega\right)-1} \Rightarrow Z_{\|}(\omega)=\frac{(R / Q) \cdot Q_{e x t}}{i \cdot\left(2 \cdot \delta \omega \cdot Q_{e x t} / \omega\right)-1}
$$



## Extracted power:

to be transported by the coupler and digested by the load and replaced by the accelerating field
For 'stable $P_{e x t}(\delta \omega)=\frac{\left|V_{\infty}\right|^{2}}{2 \cdot(R / Q) \cdot Q_{e x t}}=\frac{2 \cdot(R / Q) \cdot Q_{e x t} I_{b, D C}^{2}}{1+\left(2 \delta \omega Q_{e x t} / \omega\right)^{2}}$
field'
$\mathrm{P}_{\text {ext }}$ is $\omega$-independent: coupler P-density $* 4$, fields (arcing) $* 2!!$
Total power extracted from beam $\geq * 2$ (to be replaced by main RF)


high/medium/low $\mathrm{Q}_{\mathrm{ext}}$ Reality

high/medium/low $\mathrm{Q}_{\text {ext }}$
$\ldots$ and when people adapt the 'amplitude reference level' of their spectrum analyzer
"You 'never' hit the sharp line of a high-Q mode" ${ }^{1}$ : Nonsense !!!
higher $\mathbf{Q}_{\text {ext }} \longrightarrow$ higher induced field at ANY frequency
$\|^{1}$ Ernst Haebel got 'ballistic' each time that this 'fact' was 're-discovered' about all 2 years by new people (joining the field) ....


## Extracted power can be smaller for higher $\mathbf{Q}_{\text {ext }}$ for 'larger' $\delta \omega$ BUT: induced cavity field, $\mathrm{U}_{\mathrm{st}}$ always larger for higher $\mathrm{Q}_{\text {ext }}$

Energy conservation, NO power conservation: higher $\mathrm{Q}_{\text {ext }}$ confines stripped beam energy longer in cavity; possible coupling train to train This field (energy)

- may decelerate coming particles more: more stripped beam energy
- changes $\mathrm{V}_{\text {acc,tot }}$ unpredictable (RF feedback only on main mode)
- makes additional cryo losses
- sneaks over MC and circulator (built for $\mathrm{f}_{0}$ ) to klystron


## Sequence of $L$ trains of $M$ bunches (coupled trains)

Example: $\mathrm{f}=2 \mathrm{GHz}, \mathrm{Q}_{\mathrm{ext}}=\mathbf{1 0}^{\prime} \mathbf{0 0 0} 0^{\prime} 000 \rightarrow \tau_{\mathrm{F}}=1.6 \mathrm{~ms} \ll \mathrm{~T}_{\mathrm{T}}=20 \mathrm{~ms}(50 \mathrm{~Hz})$ trains 'always' uncoupled $\longrightarrow$ ' 50 Hz multiples' exist ONLY ON PAPER: NO PROBLEM do same 'trick' as before .... based/on single train voltage $\mathbf{V}_{\mathrm{M}}$ : (train-repetition time $\mathrm{T}_{\mathrm{T}}$ )
$V_{M, L}=V_{M} \cdot \sum_{l=0}^{l=L-1} \exp \left[(i \omega-1 / \tau) \cdot T_{T} \cdot l\right]=V_{M} \cdot \sum_{l=0}^{l=L-1} \hat{\rho}^{l}$
$\hat{\rho}=\exp \left[\left({ }^{l=0}(i \omega-1 / \tau) \cdot T_{T}\right] \quad\right.$ (geometrical series $\left.|\hat{\rho}|<1\right)$
$V_{M, L}=V_{M} \cdot \frac{1-\hat{\rho}^{L}}{1-\hat{\rho}}=\Delta V \frac{1-\rho^{M}}{1-\rho} \frac{1-\hat{\rho}^{L}}{1-\hat{\rho}} \underset{L \rightarrow \infty}{\Rightarrow} V_{M, \infty}=\Delta V \frac{1-\rho^{M}}{1-\rho} \frac{1}{1-\hat{\rho}}$
if train-length $M \cdot T_{B} \gg \tau: \quad \rho^{M} \rightarrow 0 \Rightarrow V_{M, \infty}=\frac{\Delta V}{(1-\hat{\rho})(1-\rho)}$
Result $=$ product of 'envelope functions'

## Example: Bunch-trains with $\mathbf{6 0}$ places : \{15 bunches, $\mathbf{4 5}$ voids \}

## $\tau_{\mathrm{F}}=$ field decay time


(tauF $\rightarrow 300, \mathrm{M} \rightarrow 10$, Fulltrain $\rightarrow 60, \mathrm{~L} \rightarrow 2$ )





trains are 'fully' decoupled:
current $=\underline{\text { train average }}$

If field is not stable ('ripple') average power (over repetition period $T_{R}$ ) has to be expressed as

$$
\left\langle P_{e x t}\right\rangle=\frac{1}{T_{R}} \int_{0}^{T_{R}} d t \cdot P_{e x t}(t)=\frac{1}{2 \cdot(R / Q) \cdot Q_{e x t} \cdot T_{R}} \int_{0}^{T_{R}} d t \cdot|V(t)|^{2}
$$

For SPL (except very high $\mathrm{Q}_{\text {ext }}$ modes) bunch-trains are separated ( $\mathrm{T}_{\mathrm{R}}=\mathrm{T}_{\mathrm{T}}$ ) and about 'rectangular power profile'

$$
\left\langle P_{\text {ext }}\right\rangle \approx d \frac{2 \cdot(R / Q) \cdot Q_{\text {ext }} I_{b, \text { on train }}^{2}}{1+\left(2 \delta \omega Q_{\text {ext }} / \omega\right)^{2}}
$$

d=duty-cycle (5\%)
$\mathrm{I}_{\mathrm{b}, \text { on train }}=\mathrm{q} / \mathrm{T}_{\mathrm{B}}$ the current during the pulse $(40 \mathrm{~mA} \ldots 64 \mathrm{~mA})$

