DFT Study of Hyperfine Interactions in Some Types of the Complexes **Oleg Poleshchuk, Natalya Khramova, Alexander Fateev** Tomsk State Pedagogical University, Russia

Geometry optimization

SO ₃ -B complexes	B3PW91/6-311+G(df,pd) BP86/TZ2P+ in ADF	
XY-B complexes	BHandHLYP/aug-cc-pVTZ 3-21G*,DGDZVP (iodine) BP86E/TZ2P+(ZORA) in ADF	
MHal-B complexes	B3LYP/SDD, B3LYP/DGDZVP BP86/TZ2P+(ZORA) in ADF	2

Bond Lengths

Complex	R _{D-A} , Å		R _{D-A} , Å Complex		R _{D-A} , Å		
	Exp.	Cal.		Exp.	Cal.		
HCN·SO ₃	2.577	2.538	ICI·CO	3.011	2.960		
H ₃ N·SO ₃	1.957	2.053	ICI·NH ₃	2.711	2.600		
Py SO ₃	1.915	1.983	ICI·Py	2.290	2.519		
$(CH_3)_3N \cdot SO_3$	1.912	1.997	I₂ [.] Py	2.310	2.644		
Cl ₂ ·NH ₃	2.730	2.685	AuCI·CO	2.217	2.259		
SbCl ₅ ·OPMe ₃	1.94	2.11	AuCl·Ar	2.198	2.261		
SnCl ₄ ·(OSMe ₂) ₂	2.11	2.24	AgBr·CO	2.373	2.400		
$TiCl_4$ (CH ₃ CN) ₂	2.21	2.28	AgBr·Ar	2.393	2.427		
$TiCl_4$ (OPCl_3) ₂	2.22	2.20	CuFCO	1.736	1.758		
ICI Ar	3.576	3.761	CuBr·CO	2.182	2.225		

- A comparison of the geometrical parameters calculated by us with the experimental data of free molecules and complexes displays that the bond lengths have been overestimated.
- Analysis leads to the following correlations between the calculated and experimental bond lengths and valence angles for the compounds studied.

SO₃-B complexes

R(cal.) = 0.46 + 0.79 R(exp.)(r=0.991; s=0.03; n=9)

Correlation between experimental and calculated at B3PW91/6-311+G(df,pd) level bond lengths.

NSO(cal.) = 23.3 + 0.75 NSO(exp.) (r=0.999; s=0.16; n=7) Correlation between experimental and calculated at B3PW91/6-311+G(df,pd) level valence degree5

XY-B complexes

HalM-L complexes

HalM-L complexes

Rotational constants

Complex	B ₀ , MHz		Complex	B ₀ , MHz	
	Exp.	Cal.		Exp.	Cal.
H ₃ N [.] SO ₃	4378	4189	CIF-CH ₃ CN	919	919
$(CH_3)_3NSO_3$	1633	1585	ICI·CO	903	888
HCN·SO ₃	409	445	ICI·NH ₃	1608	1604
CH ₃ CN·SO ₃	1016	1038	AuCl	3519	3306
HCCCN·SO ₃	655	665	AuCICO	1404	1367
(HCN) ₂ ·SO ₃	409	419	CuCICO	1563	1527
Cl ₂ ·NH ₃	1895	1890	CuBrCO	1034	1011
CIFNH ₃	3316	3328	AgCICO	1316	1299
BrCI·NH ₃	1801	1815	AgBrCO	852	840

 $B_0(cal.) = -38 + 1.05 B_0(exp.)$ (r=0.9999; s=14; n=7) for SO₃ complexes

 $B_0(cal.) = 10.7 + 0.99 B_0(exp.)$ (r=0.9999; s=34; n=22) for halogen complexes

 $B_0(cal.) = 15.1 + 0.95 B_0(exp.)$ (r = 0.998; s = 49; n = 13) for metal complexes

- The halogen, metal and nitrogen nuclear quadrupole coupling constants obtained by these calculations substantially corresponded to the data of microwave spectroscopy in the gas phase. An analysis of the quality of the calculations that employ the pseudo-potential and the expanded basis set for the halogen compounds was carried out. The ZORA model is
- shown to be a viable alternative to the computa-
- tionally demanding pseudo-potential model for the calculation of the iodine and metal (Nb, Au, Sb) quadrupole coupling constants in molecules.

NQCC ¹⁴N in SO₃ complexes

Correlation between experimental and calculated at B3PW91/6-311+G(df,pd) level $^{14}N\text{-}NQCC$ in SO_3 complexes.

¹⁴N-NQCC in nitrogen molecules

Dependence between experimental and calculated at BP86/TZ2P+ level NQCC values of N nuclei in nitrogen molecules

¹⁷O-NQCC in oxygen molecules

Dependence between experimental and calculated at BP86/TZ2P+ level NQCC values of O nuclei in oxygen molecules

Dependence between experimental and calculated at BHandHLYP/aug-cc-pVTZ level NQCC values of Cl, Br, N nuclei in XY-B complexes

NQCC iodine nuclei

e²Qqzz (exp.) MHz

Dependence between calculated and experimental ¹²⁷I-NQCC values of the XY...B(XY=I) complexes at ZORA in ADF

Dependence between calculated and experimental ¹²⁷I-NQCC values of the XY...B(XY=I) complexes at B3LYP/dgdzvp level 16

³⁵CI- NQCC in XY-B complexes

 $e^{2}Qq(exp.) = -5.1 + 1.05 e^{2}Qq(cal.)$

(r = 0.997; s = 3.5; n = 48)

Dependence between experimental and calculated at BP86/TZ2P+ level NQCC values of Cl and Br nuclei in XY-B complexes

NQCC in Xe-B complexes

 $e^{2}Qq(exp.) = -0.3 + 0.9 e^{2}Qq(cal.)$

$$(r = 0.987; s = 0.8; n = 6)$$

Dependence between experimental and calculated at B3LYP/DGDZVP level NQCC values of Xe nuclei in Xe-B complexes

Energy decomposition analysis (kcal/mol)

Complex	$\Delta E_{\rm prep.}$	∆E _{Pauli}	$\Delta E_{\text{electr.}}$	$\Delta E_{\rm orb.}$	$D_{e}^{ADF}/D_{0}^{gauss}$
HCN·SO ₃	0.86	22.44	-13.25	-10.57	0.5/4.2
HCCCN·SO ₃	0.94	23.4	-13.57	-11.13	0.4/3.5
$(\text{HCN})_2 \cdot \text{SO}_3$	0.67	31.42	-18.79	-16.08	2.8/7.0
CH ₃ CN·SO ₃	1.72	35.15	-21.05	-18.22	2.4/7.8
H ₃ N·SO ₃	6.51	125.26	-76.37	-71.53	16.1/18.4
Py·SO ₃	9.98	153.33	-90.53	-89.73	17.0/23.1
$(CH_3)_3 N \cdot SO_3$	11.55	162.94	-97.37	-97.49	20.4/28.7

- The $\Delta E_{\text{elstat.}}$ term in all complexes is close to the ΔE_{orb} term, although for weakly bound complexes the electrostatic interactions tend to be slightly larger than the covalent ones.
- The calculated values of the bonding energy in these complexes using the ADF package differ from those obtained at the B3PW91/6-311+G(df,pd) level. However, the variation from one system to another is similar:

•
$$D_e^{\text{ADF}} = -4.5 + 0.83 D_0^{-6-311+G(df,pd)}$$

(*r*=0.990; *s*=1.4; *n*=7)

NBO analysis for SO₃ complexes

Complex	Orbital	oital Occupaid Hybridization of S atom (%)			of S	E _{ij} ⁽²⁾ (kcal/	Interaction between bonding and anti-
			S	р	d	mol)	bonding orbitals
HCN·SO ₃	LP(N)	1.942	33.1	65.3	1.6	8.1	$LP(N) \rightarrow BD^*(S-O)$
HCCCN·SO ₃	LP(N)	1.937	32.1	66.3	1.6	8.6	$LP(N) \rightarrow BD^*(S-O)$
$(\text{HCN})_2 \cdot \text{SO}_3$	LP(N)	1.920	31.2	67.0	1.8	13.1	$LP(N) \rightarrow BD^*(S-O)$
CH ₃ CN·SO ₃	LP(N)	1.906	33.0	65.3	1.7	15.4	$LP(N) \rightarrow BD^*(S-O)$
H ₃ N·SO ₃	BD(N-S)	1.888	17.7	43.5	38.8	93.1	BD(N-S)→BD*(S-O)
Py·SO ₃	BD(N-S)	1.851	16.4	46.8	36.8	105.4	BD(N-S)→BD*(S-O)
$(CH_3)_3 N \cdot SO_3$	LP(O)	1.751	12.5	85.1	2.4	142.8	$LP(O) \rightarrow BD^*(N-S)$

SO₃...B complexes

- NBO second-order interaction energies of $n\pi$ complexes shown that the LP(N) $\rightarrow \pi^*_{SO3}$ (LP=lone electron pair) donor-acceptor interaction is the source of such intermolecular charge transfer.
- *D_e* ^{ADF}/kcal/mol = 5.4 + 0.2 ∆*E_{ij}*⁽²⁾/kcal/mol (r=0.998; s=0.7; n=7)

Bonding energy versus charge transfer (NAO) for SO₃ complexes

Energy decomposition and NBO analysis (kcal/mol)

Complex	ΔE _{prep.}	ΔE_{Pauli}	$\Delta E_{electr.}$	$\Delta E_{orb.}$	D _e	R _{B-Y} cal.	$E_{ij}^{(2)}$
IClAr	0.0	0.1	0.0	-0.2	0.1	4.433	1.0
ICICO	0.7	67.8	-34.3	-36.5	2.3	2.413	13.5
I ₂ Py	0.4	48.6	-32.1	-25.6	8.7	2.564	36.4
IBrPy	1.7	44.9	-31.3	-24.9	9.6	2.576	45.2
I ₂ N(CH ₃) ₃	1.8	50.0	-33.2	-28.4	9.7	2.601	40.2
ICINH ₃	1.3	45.2	-32.6	-24.1	10.1	2.576	53.5
IClPy	1.9	59.4	-40.9	-31.5	11.1	2.475	56.8

Bonding energy by ADF is close to outcomes at the BHandHLYP/augcc-pVTZ $D_e^{ADF} = -0.1 + 0.9 D_e^{aug-cc-pVTZ}$ (r=0.995; s=0.5; n=7) 29

ICI...B complexes

- The $\Delta E_{elstat.}$ term in all complexes is larger than the ΔE_{orb} term. This suggests that the Y-B bonding in these complexes is more electrostatic than covalent.
- NBO second-order interaction energies of nσcomplexes shown that the LP(B)→σ*XY (LP=lone electron pair, B=N, C, Ar coordinated atom) donoracceptor interaction is the source of such intermolecular charge transfer.
- *D*_e^{ADF}/kcal/mol = 0.2 + 0.2 ∆*E*_{ij}⁽²⁾/kcal/mol (r=0.978; s=1.0; n=7)

Dependence between D_e and electron transfer (NAO) in XY...B complexes

- The calculated bonding energies for both complexes are strongly correlated with the extent of electron transfer from base to the acceptor from the natural atomic charges.
- These correlations contrasts with the different situation found for the main group and transition metal complexes.
- Apparently, related to this is the observation that, according to our calculations, the electronic charge changes are significant only on the two atoms immediately involved in the intermolecular bond, while in metal chloride complexes such changes are appreciable on all atoms.

Energy decomposition analysis,kcal/mol

Complex	ΔE _{prep.}	ΔE _{Pauli}	ΔE _{electr.}	ΔE _{orb.}	D_{e}^{ADF}	D_{e}^{Gauss}	ΔΕ _{ij} ⁽²⁾
OC-CuCl	0.0	96.0	-80.5	-56.7	41.2	36.0	110
OC-AgCl	-0.1	99.7	-77.6	-44.5	22.5	24.6	103
OC-AuCl	-0.2	176.9	-139.4	-86.0	48.7	46.4	256
Py-CuCl	0.7	77.4	-80.5	-33.9	36.3	38.3	66
Py-AgCl	0.4	68.7	-66.2	-24.7	21.8	27.5	56
Py-AuCl	0.7	111.1	-102.6	-46.5	37.3	40.7	119
(CH ₃) ₃ PO-CuCl	1.7	60.3	-63.6	-28.6	30.2	36.2	79
(CH ₃) ₃ PO-AgCl	1.0	49.6	-49.5	-20.2	19.1	26.0	23
(CH ₃) ₃ PO-AuCl	1.9	72.8	-67.4	-34.6	27.3	33.6	58

Decomposition of the formation energy of the complexes by ADF, kcal/mol

Complex	ΔE_{prep}	$\Delta \mathbf{E}_{Pauli}$	ΔE_{elstat}	∆E _{orbtot}	∆E _{int}	D _e /D ₀ Gauss
SbCl ₅ SMe ₂	7.9	83.2	-54.3	-48.9	-20.0	12.1/ 13.5
SbCl ₅ OPMe ₃	11.1	128.0	-94.0	-65.7	-31.7	20.6/ 25.4
SbCl ₅ NCCH ₃	4.8	72.4	-49.1	-34.1	-10.8	6.0 /9.9
SbCl ₅ OPCl ₃	4.1	46.2	-30.7	-20.9	-5.4	1.3/ 5.3
SbCl ₅ OSCl ₂	2.2	15.7	-10.0	-6.2	-0.5	1.7/ 0.7
SbCl ₅ Py	9.4	109.3	-79.6	-56.6	-26.9	17.5/ 20.0

$MCI_n \dots B$ complexes

- The $\Delta E_{elstat.}$ term in all complexes is larger than the ΔE_{orb} term. This suggests that the M-B bonding in these complexes is more electrostatic than covalent.
- NBO second-order interaction energies of nvcomplexes shown that the LP(B)→σ*MCI (LP=lone electron pair, B=N, O, S, P coordinated atom) donoracceptor interaction is the source of such intermolecular charge transfer.
- *D_e*^{ADF}/kcal/mol = 19.6 + 0.12 *∆E_{ij}*⁽²⁾/kcal/mol (r=0.80; s=6.0; n=12)

Conclusions

- The calculations clearly show that the calculated by Gaussian and ADF bond lengths, IR-spectra correlate with the experimental values.
- The halogen, nitrogen and metal NQCC's obtained by both calculations substantially corresponded to the data of microwave and NQR-spectroscopy.
- The calculated by both methods stabilization energies are close to the experimental values.
- We have found the correlations between charge donation and the calculated bonding energies of the halogen and SO₃ complexes contrasts with the different situation found for the main group and transition metal complexes.
- From EPA scheme follows that for all complexes the electrostatic bonding is a little bit more than covalent bonding.