Electric field gradient calculations by quantum chemical methods

Vladimír Kellö

Department of Physical and Theoretical Chemistry, Comenius University, SK-842 15 Bratislava, Slovakia

The electric field at the given nucleus X, produced by all electrons and other nuclei of the molecule, is not uniform and has a non-vanishing gradient. EFG, which from the point of view of the given nucleus is a measure of the inhomogeneity of the external electric field, is a molecular property of the first order and can be **determined from the** knowledge of the electronic wave function and positions of other nuclei.

Accurate ab initio calculations

Electron correlation effects:

 \succ CCSD(T)

Relativistic effects:

➤ DKH2, sfIOTC

Saturated basis set of atomic functions

Large uncontracted (mostly) bases

Computer program:

MOLCAS (University of Lund, Sweden)

CERN, September 2010

All properties other than energy can be considered as resulting from the action of some perturbation operator. Derivatives of energy with respect to the perturbation strength parameter define atomic and molecular properties of the given order e.g.

• 1st order: electric moments, electric field gradient, the Hellman-Fyenman force, ...

• 2nd order: electric polarizabilities, force constants, geometry derivatives of the 1st order properties,...

2-component methods

L.L.Foldy, S.A.Wouthuysen; Phys.Rev. 78, 29 (1950) $4 \Longrightarrow 2 + 2 \Longrightarrow 2$

- M.Douglas, N.M.Kroll; Ann.Phys. (N.Y.) 82, 89 (1974)
- J.Sucher; Phys.Rev. A 22, 348 (1980)
- G.Hardekopf, J.Sucher; Phys.Rev. A 30, 703 (1984)
- J.Almlöf, K.Faegri, H.H.Grelland; Chem.Phys.Letters 114, 53 (1985)
- B.A.Hess; Phys.Rev. A 33, 3742 (1986)
- G.Jansen, B.A.Hess; Phys.Rev. A 39, 6016 (1989)

In 2-component relativistic calculations

- Should the perturbation be added at the level of the 4-component theory and then reduced to the 2-component approximation?
- Can the perturbation be added *a posteriori* to the given
 2-component Hamiltonian?

The difference between the two ways of handling the perturbation makes what is known as the **change of picture** contribution. *A.Messiah, Quantum Mechanics, North-Holland, Amsterdam, 1969, Vol.II p.943* The transformation of the 4-component Hamiltonian to some 2-component form requires that all other operators should be transformed in the same way.

The first consideration of this problem in the framework of the DKH method was done for dipole moments of CuH, AgH, and AuH. *V.Kellö, A.J.Sadlej, B.A.Hess; J.Chem.Phys.* **105**, 1995 (1996)

• The change of picture effect for the dipole moment operator is negligible

Should the change of picture be taken into account?

- YES: The change of picture is the α² effect M.Barysz, A.J.Sadlej; Theor.Chim.Acc. 97, 260 (1997) M.Barysz; Pol.J.Chem. 74, 1329 (2000) K.G.Dyall; Int.J.Quantum Chem. 78, 412 (2000)
- NO: In spite of being of the order of α², the change of picture negligibly affects the valence-determined properties *V.Kellö, A.J.Sadlej, B.A.Hess; J.Chem.Phys.* 105, 1995 (1996)
- YES: Important for operators which assume large values in the vicinity of nuclei, e.g. electric field gradient *V.Kellö, A.J.Sadlej; Int.J.Quantum Chem.* 68, 159 (1998)

Shifted nucleus model (SNM)

V.Kellö, A.J.Sadlej; J.Chem.Phys 120, 9424 (2004)

$$\Delta(d^{2}) = E_{z}(d^{2}) - \frac{1}{2} E_{x}(d^{2}) + E_{y}(d^{2}) = E_{II}(d^{2}) - E_{\perp}(d^{2})$$
$$= a_{1}d^{2} + a_{2}d^{4} + \dots$$

$$\left(\frac{\partial \Delta(d^2)}{\partial(d^2)}\right)_{d=0} = -\frac{\Delta(4d^2) + 320\,\Delta(2d^2) - 5376\,\Delta(d^2)}{4080\,d^2}$$

CERN, September 2010

10

The important difference between the SN approach and the PCNQM model is that the value Z_N is *a priori* known. Thus the SN approach is a one-parameter method and its performance can be easily tested.

The explicit transformation of **EFG** operator within the DKH approach taking picture-change effects analytically into account

R. Mastalerz, G. Barone, R. Lindh, M. Reiher; J. Chem. Phys. 127, 074105 (2007)

L.Demovič, V.Kellö, A.J.Sadlej; Chem. Phys. Letters **498**, *xxx* (2010) Testing the accuracy of the shifted nucleus model in calculation of EFG (nonrelativistic SCF electronic contribution) at As in AsP (a.u.).

d	q_{zz}	
0.0012	-4.575 5499	
0.0006	-4.578 3165	
0.0003	-4.578 9899	
0.00015	-4.579 1246	
0.00015, 0.0003, 0.0006	-4.579 1700	
0.0003, 0.0006, 0.0012	-4.579 2147	
expectation value	-4.579 2 <mark>408</mark>	

V.Kellö, A.J.Sadlej; Intern.J.Quantum Chem. 68, 159 (1998)

Change of picture effect on the electric field gradients in one-electron ions as calculated in DKH-SCF approximation [a.u.].

Ion	Term	no-CP $\langle q_{\rm zz} \rangle$	$\mathrm{CP}\langle q_{\mathrm{zz}} \rangle$	
Ne ⁺⁹	$2p^{_1}$, 2P	-33.614	-33.449	(0.5%)
Ar^{+17}	$2p^{_1}$, 2P	-199.73	-196.58	(1.6%)
Kr ⁺³⁵	$2p^{_1}$, 2P	-1735.05	-1624.69	(6.8%)
Xe ⁺⁵³	$2p^{_1}$, 2P	-6777.89	-5760.44	(17.7%)
Rn ⁺⁸⁵	$2p^{_1}$, 2P	-44728.2	-25171.8	(77.7%)

V.Kellö, A.J.Sadlej; Intern.J.Quantum Chem. 68, 159 (1998) V.Kellö, A.J.Sadlej; J.Chem.Phys. 112, 522 (2000)

Change of picture effect on the electronic contribution to electric field gradients at the halogen nucleus in hydrogen halides as calculated in DKH-SCF approximation [a.u.].

Molecule	no-CP $\langle q_{zz} \rangle$	$\operatorname{CP}\langle q_{\mathrm{zz}} \rangle$	
HC1	3.540	3.511	(0.8%)
HBr	7.806	7.520	(3.8%)
HI	12.657	11.683	(8.3%)
HAt	34.621	26.656	(29.9%)

V.Kellö, A.J.Sadlej; Intern.J.Quantum Chem. 68, 159 (1998)

Electronic contribution to electric field gradients at the halogen nucleus in hydrogen halides calculated as expectation value and using the PCNQM model in non-relativistic SCF approximation [a.u.].

Molecule	$\mathrm{EV}_{\langle q_{\mathrm{zz}} \rangle}$	PCNQM_ $\langle q_{zz} \rangle$	
HCl	3.464	3.464	
HBr	6.998	7.000	
HI	9.726	9.734	
HAt	15.443	15.433	

For a quadrupolar nucleus there is an interaction between nuclear quadrupole moment Q(X) of the nucleus X and electric field gradient q^X resulting from the distribution of other charges.

The effect of the Q-q interaction can be seen as:

- splittings of lines in atomic spectra
- splittings in rotational spectra of molecules
- affecting NQR and Mössbauer spectra of solids

and is measured with a high accuracy. It is often called nuclear quadrupole coupling constant (NQCC)

Hence, by combining the experimental and theoretical results one can obtain NQM values, which, according to the source of the experimental data, are referred to as:

- Atomic
- Molecular
- Solid-state

It does not happen frequently that molecular spectroscopic data combined with accurate quantum chemical calculations can be of great help in as remote an area as nuclear physics. The determination of nuclear quadrupole moments (NQM) from molecular spectroscopic data gives one such rare example and its high accuracy surpass that of other methods.

- The main competitor of this method was the mesonic way, based on measuring the hyper-structure of essentially Coulombic energy levels of μ or π mesons near the nucleus studied. No such experiments have been published for almost three decades, however, these mesonic NQM values still stand as the benchmark ones for heavier elements.
- Low-precision determinations of NQM are available from:
 - nuclear Coulomb scattering
 - nuclear rotational energy levels
 - nuclear theory

- The knowledge of reliable NQM is of considerable interest in:
- chemical and solid state spectroscopy; NQR, NMR, Mössbauer
- nuclear physics for testing nuclear models for stable isotopes.
 - 1992 P. Pyykkö, Z. Naturforsch. **47a**, 189 (1992)
 - 2001 P. Pyykkö, Mol. Phys. 99, 1617 (2001)
 - 2008 P. Pyykkö, Mol. Phys. 106, 1965 (2008)

Molecular (diatomic) calculations of NQM

$$Q(X) = \frac{v_Q^X(v)}{234.96473q^X(v)}$$

 $v_Q^X(v)$ -nuclear quadrupole coupling constant (NQCC) for the nucleus X and the vibration state v; MHz

 $q^{X}(v)$ - axial (*zz*) component of the electric field gradient tensor (EFG) at *X* and the vibration state *v*; a.u.

Q(X) - nuclear quadrupole moment of the nucleus *X*; barns (1b = 10⁻²⁸ m²) Vibrational contributions to $q^{X}(v)$ estimated usually by using Buckingham formula. *A.D.Buckingham J.Chem.Phys.* **36**, 3096 (1962)

$$q^{X}(v) = q^{X}_{e} + q^{X}_{vib} \approx q^{X}_{e} + q^{X}_{1} \left(v + \frac{1}{2}\right)$$
$$q^{X}_{1} = \frac{B_{e}}{\omega_{e}} \left[3 \left(1 + \frac{\alpha_{e}\omega_{e}}{6B_{e}^{2}}\right) \left(\frac{\partial q^{X}}{\partial \xi}\right)_{\xi=0} + \left(\frac{\partial^{2}q^{X}}{\partial \xi^{2}}\right)_{\xi=0} \right]$$

CERN, September 2010

; $\xi = (R - R_{e}) / R_{e}$

V. Kellö, A. J. Sadlej; Mol. Phys. 89, 127 (1996)

J. Bieroń, P. Pyykkö, D. Sundholm, V. Kellö, A. J.Sadlej; Phys. Rev. A 64, 052507 (2001)

Values for the nuclear quadrupole moments of ⁷⁹Br and ¹²⁷I nuclei

System	<i>q</i> /a.u.	<i>Q</i> /mb
$^{1}\text{H}^{79}\text{Br}, (v=0)$		
no-CP CCSD(T)_8el.	7.579	299
CP CCSD(T)_8el.	7.308 (3.7%)	310
CP CCSD(T)_18el.	7.313	310
Recommended value this work (a	considering atomic value of 31	4) 313(3)
¹ H ¹²⁷ I, (<i>v</i> =0)		
no-CP CCSD(T)_8el.	11.935	-651
CP CCSD(T)_8el.	11.013 (8.5%)	-707
CP CCSD(T)_18el.	11.038	-705
Recommended value based on 4-	-component $CCSD(T)^a$	-696(12)

^a J. N. P. Van Stralen, L.Visscher, Mol. Phys. **101**, 2115 (2003)

CERN, September 2010

V.Kellö, A.J.Sadlej; Mol.Phys. 96, 275 (1999)

'Molecular' values for the nuclear quadrupole moment of ⁷³Ge^a

System	υ_o/MHz	electronic c	ontributions to	<i>q</i> /a.u.	
$Q(^{73}Ge)/mb$	-				
		DKH-SCF	DKH-CCSD	DKH(T) ^b	
⁷³ Ge ¹⁶ O, (<i>v</i> =0)	208.33	-6.332	0.947	0.235	-195.2
			(15.0%)	(3.7%)	
⁷³ Ge ³² S, (<i>v</i> =0)	187.76	-5.160	0.861	0.289	-196.6
			(16.7%)	(5.6%)	
Reference 'atomic	' value ^c				-173(26)

Recommended value this work

- ^a Calculated at experimental bond distance, 20 electron correlated basis sets: O - [14s11p4d/7s7p2d], S - [18s14p6d/10s8p3d], Ge - 21s15p9d4f/21s15p6d4f]
- ^b Contribution of noniterative triples CCSD(T) CCSD
- ^c P.Pyykkö, J.Li, 1992 Nuclear quadrupole moments. Report HUKI 1-92 CERN, September 2010

V.Kellö, A.J.Sadlej, P.Pyykkö, D.Sundholm, M.Tokman; Chem. Phys. Letters 304, 414 (1999)

'Atomic' and 'molecular' values for the NQM of ²⁷Al

System	υ_{o}/MHz	$q^{ m Al}$ /a.u.	$Q(^{27}\text{Al})/\text{mb}$
'Molecular' values this we	ork		
$^{27}Al^{19}F, R_{e}$	-37.75 ± 0.08	-1.099 ^a	146.2 ^b
²⁷ Al ¹⁹ F, (<i>v</i> =0)	-37.53 ± 0.12	-1.09 1 ^a	146.4 ^b
²⁷ Al ³⁵ Cl, (<i>v</i> =0)	-30.4081 ± 0.0027	-0.879^{a}	147.2°
²⁷ Al ³⁷ Cl, (<i>v</i> =0)	-30.4112±0.0028	-0.879^{a}	147.2°
'Atomic' value this work			
$^{27}\text{Al}(^{2}\text{P}_{3/2})$	18.91526 ± 0.0007	-0.5493	146.6 ^c
Reference 'atomic' va	140.3 ± 1.0		
Reference 'muonic' ve	150.±6.		
Recommended value	this work		146.6±1.0

^a The DKH CCSD(T) value

^b The experimental uncertainties of v_{Q} correspond to ΔQ values of 0.3 -0.5 mb

^c The experimental uncertainties of v_Q^2 do not affect the error bars of the obtained $Q(^{27}\text{Al})$

- ^d D.Sundholm, P.Pyykkö, L.Laaksonen, A.J.Sadlej, Chem.Phys.Letters **112**, 1 (1984)
- R.Weber et al., Nucl.Phys. A377, 361 (1982)
 CERN, September 2010 'EFG'

V.Kellö, P.Pyykkö, A.J.Sadlej, P.Schwerdtfeger, J.Thyssen; Chem. Phys. Letters 318, 222(2000)

'Molecular' values for the nuclear quadrupole moment of ⁹¹Zr nucleus

System	υ_Q/MHz^a	$q^{\mathrm{Zr}}/\mathrm{a.u.}$	$Q(^{91}\mathrm{Zr})/\mathrm{mb}$
⁹¹ Zr ¹⁶ O, (<i>v</i> =0)	130.5499(46)	-3.11 ^b	179
		$-3.16^{\circ} (\Delta_{SO} = -0.0056)$) 176
⁹¹ Zr ³² S, (<i>v</i> =0)	116.4609(47)	-2.86 ^b	173
Reference 'atomic'	values		206(10) ^d
			257 ^e
			$230(20)^{f}$
Recommended valu	e this work		176(3)

- ^a S.A.Beaton, M.C.L.Gerry, J.Chem.Phys. **110**, 10715 (1999).
- ^b The DKH CCSD(T) values, 28 respectively 34 electrons correlated.
- ^c The 4-component CCSD(T) values.
- ^d S.Büttgenbach, Hyperfine structure in 4d- and 5d-shell atoms. Springer, Berlin 1992, p.83 ('blue card value').
- ^e L.Young, C.A.Kurtz, D.R.Beck, D.Datta, Phys.Rev. A 48, 173 (1993)
- ^f S.Bouazza, J.Dembczyski, E.Stachowska, G.Szawiola, J.Ruczkowski, Eur.Phys.D4, 39 (1998)

CERN, September 2010

L.Demovič, V.Kellö, A.J.Sadlej, S.A.Cooke; J.Chem.Phys. 124, 184308 (2006)

	'Molecular' va	lues for NQN	Λ of ¹²¹ Sb	nucleus
--	----------------	--------------	--------------------------------	---------

System	υ ₀ /MHz ^a	q ^{Sb} ∕a.u.	$Q(^{121}\text{Sb})/\text{mb}$
SbN	649.669	-5.199	-532
SbP	620.350	-4.931	-535
SbF	-586.802	4.407	-567
SbC1	-515.124	3.788	-579
1955 atomic valu	e ^b	-530 100	
2001 "recomment	ded" value ^c	-360±40	
2003 solid state v	value ^d	-669 15	
2006 IOTC-CCS	SD(T) value, this	work -556±24	
2006 DC-CCSD-	T value ^e	-543 11	

^a S.A.Cooke, M.C.L.Gerry, PCCP 6, 4579 (2004); J.Mol.Spectr. 234, 195 (2005)
^b K.Murakawa, Phys. Rev. 100 1369 (1955); ^c P.Pyykkö, Mol.Phys. 99, 1617 (2001);
^d A.Svane, Phys.Rev. B 68, 064422 (2003);

25

^e R.L.A.Haiduke, A.B.F. da Silva, L.Visscher, J. Chem. Phys. **125**, 064301 (2006) CERN, September 2010 'EFG'

L.Demovič, V.Kellö, A.J.Sadlej; Chem. Phys. Letters 498, xxx (2010)

Contributions to electric field gradient at As in AsP (a.u.)

Method	NR	IOTC
contributions to $q(As)$		
SCF	-4.5825	-4.7675
CCSD	0.5752	0.6139
T ₃	0.1724	0.1824
Δ (core)MP2	0.0058	0.0021
$CCSD(T)+\Delta(core)MP2$	0.7533	0.7984
$q_{\rm el}({\rm As})$	-3.8291	-3.9691
$q_{\rm nuc}({\rm As})$		0.5557
q(As)	-3.2735	-3.4134

Basis set As (21s18p15d8f7g3h3i), P (19s14p9d8f)

L.Demovič, V.Kellö, A.J.Sadlej; Chem. Phys. Letters 498, xxx (2010)

Molecular value of $Q(^{75}As)$ and comparison with other data.

	<i>Q</i> /mb
Present value	311±2
Reference 'atomic' value ^a	300±50
Reference 'muonic' value ^b	314±6

^a B. Effenberger, W. Kunold, W. Oesterle, M. Schneider, L.M. Simons, R. Abela, J. Wüest, Z. Phys. A **309**, 77 (1982).

^b M. Voss, W. Weiss, R. Winkler, Physica B+C **123**, 21(1983).

L.Demovič, V.Kellö, A.J.Sadlej; Chem. Phys. Letters 498, xxx (2010)

Testing the saturation of the basis set in calculation of EFG (electronic contribution) at As in AsP (a.u.).

Basis As	$q_{\rm IOTC \ CCSD(T)}$
21s16p13d8f5g	-3.9558
21s17p13d8f5g	-3.9581
21s18p13d8f5g	-3.9603
21s18p15d8f5g	-3.9696
21s18p15d8f6g	-3.9610
21s18p15d8f7g	-3.9612
21s18p15d8f7g2h	-3.9638
21s18p15d8f7g3h	-3.9666
21s18p15d8f7g3h2i	-3.9689
21s18p15d8f7g3h3i	-3.9707

V.Kellö, A.J.Sadlej; Collect. Czech. Chem. Commun. 72, 64 (2007)

Basis set dependence of EFG (q a.u.) calculated at N in the NP molecule. Study of the 'spectator' atom basis set.

Basis N 'actor'	Basis P 'spectator'	$q_{ m HF}$	$q_{\rm corr/CCSD(T)}$	q^{a}
A- 16s11p5d	A- 19s14p7d	-2.7312	0.3103	-1.0793
C-16s12p7d6f	A- 19s14p7d	-2.7385	0.3104	-1.0865
C-16s12p7d6f	B- 19s14p9d8f	-2.7415	0.2973	-1.1026
C-16s12p7d6f	C- 19s15p10d9f	-2.7416	0.2973	-1.1027
E- 16s14p9d8f	B -19s14p9d8f	-2.7114	$0.2885 \\ 0.2885 \\ 0.2885$	-1.0813
E- 16s14p9d8f	C -19s15p10d9f	-2.7115		-1.0814
E- 16s14p9d8f	E -19s17p12d11f	-2.7115		-1.0814

^a The total value of q which includes the nuclear contribution 1.3416 a.u.

CERN, September 2010

V.Kellö, A.J.Sadlej; Collect. Czech. Chem. Commun. 72, 64 (2007)

Basis set dependence of EFG (q a.u.) calculated at N in the NP molecule. Study of the 'actor' atom basis set.

Basis N 'actor'	Basis P'spectator	' $q_{ m HF}$	$q_{ m corr/CCSD(T)}$	$(z) q^{a}$
B -16s12p7d6f C -16s12p7d6f E -16s14p9d8f H -16s15p12d11f	B -19s14p9d8f B -19s14p9d8f B -19s14p9d8f B -19s14p9d8f B -19s14p9d8f	-2.7524 -2.7415 -2.7114 -2.7079	0.3037 0.2973 0.2885 0.2876	-1.1072 -1.1026 -1.0813 -1.0787
C- 16s12p7d6f E- 16s14p9d8f H- 16s15p12d11f	C-19s15p10d9f C-19s15p10d9f C-19s15p10d9f	-2.7416 -2.7115 -2.7079	0.2973 0.2885 0.2876	-1.1027 -1.0814 -1.0787

^a The total value of q which includes the nuclear contribution 1.3416 a.u.

V.Kellö, A.J.Sadlej; Collect. Czech. Chem. Commun. 72, 64 (2007)

The most accurate value of q obtained in this paper -1.0762a.u., combined with the experimental NQCC value of ¹⁴N -5.1728 ± 0.0005 MHz ^a, leads to the 'molecular' result $Q(^{14}N)$ 20.46 mb which is perfectly within the error bars of the very accurate 'atomic' value 20.44 \pm 0.03 mb ^b.

^a J. Raymonda, W. Klemperer; J. Chem. Phys. 55, 232 (1971)
 ^b M.Tokman, D.Sundholm, P.Pyykkö, J.Olsen; Chem. Phys. Lett. 265, 60 (1997).

The gold challenge

Source	Q(¹⁹⁷ Au)/barn	year	Ref.
muonic spectroscopy	0.547(16)	1974	1
solid state DFT & Mössbauer	0.600-0.640	2005	2
DC CCSD(T)	0.519(19)	2007	3
4-component DFT	0.526	2007	4
IOTC/DC CCSD(T)	0.480	2008	5

1. R.J. Powers, P.Martin, G.H.Miller, R.E.Welsh, D. A.Jenkins; Nucl. Phys. A230, 413 (1974)

- 2. P.Schwerdtfeger, R.Bast, M.C.L.Gerry, C.R.Jacob, M.Jansen, V.Kellö, A.V.Mudring, A.J. Sadlej, T.Saue, T.Sohnel, F.E.Wagner; J.Chem.Phys. **122**, 124317 (2005)
- 3. L. Belpassi, F. Tarantelli, A. Sgamellotti, H. M. Quiney, J. N. P. van Stralen, L. Visscher; J. Chem. Phys. **126**, 064314 (2007).
- 4. C. Thierfelder, P.Schwerdtfeger, T. Saue; Phys. Rev. A 76, 034502 (2007)
- 5. C.Clavaguéra, J-P.Dognon, V.Kellö, P.Pyykkö, A.J.Sadlej, P.Schwerdtfeger; to be published

CERN, September 2010

Conclusions

The presented results clearly proved that accurate *ab initio* calculations of electric filed gradients at nuclei in combination with nuclear quadrupole coupling constants obtained from microwave spectra are reliable source of nuclear quadrupole moments. This is a nice example of the synergy effect of experiment and theory.

Review; M. Iliaš, V. Kellö, M. Urban; Acta Phys. Slovaca 60, 259-391 (2010)

My thanks to:

Andrzej Sadlej Pekka Pyykkö, Helsinki Steve Cooke, Denton Peter Schwerdtfeger, Auckland Miroslav Urban, Bratislava Lukáš Demovič, Bratislava

for the financial support:

Slovak Research & Development Agency, LPP-0110-07; Slovak Grant Agency, VEGA 1/0428/09; Research & Development Operational Programme funded by the ERDF, ITMS 26240120025.

Thank you for your attention