

Density of Phonon States at the Fe Sites in Superconducting FeSe as Function of Temperature and Pressure

Vadim Ksenofontov¹, <u>Gerhard Wortmann</u>², Aleksandr Chumakov³, Teuta Gasi¹, Sergey Medvedev^{1,4}, Tyrel M. McQueen⁵, Richard J. Cava⁵, and Claudia Felser¹

¹Institut für Anorganische und Analytische Chemie, 55099 Mainz, Germany
 ²Department Physik, Universität Paderborn, 33095 Paderborn, Germany
 ³ESRF, 38043 Grenoble, France
 ⁴Max-Planck-Institute for Chemistry, 55128 Mainz, Germanyy
 ⁵Department of Chemistry, Princeton University, Princeton NJ 08544, USA

Oral Contribution on the HFI-NQI 2010 at CERN, Geneve, 13.-17.Sept. 2010

Outline of the talk

- Superconducting (s.c.) $Fe_{1+x}Se$: phase analysis
- Pressure-induced effects in Fe_{1.01}Se:
 Superconductivity, structure, Mössbauer spectra
- Temperature and pressure dependence of the density of phonon states at the Fe sites in $Fe_{1.01}Se$
- Comparison with the phonon-DOS in s.c. $FeSe_{0.5}Te_{0.5}$ X-tals: Use of polarisation
- Short discussion of possible pairing mechanism in FeSe systems
 - Refs: F.C. Hsu, Proc. Natl Acad. Sci. 105, 14262 (2008).
 T.M. McQueen et al., Phys. Rev. B 79, 014522 (2009).
 S. Medvedev et al., Nature Mater. 8, 630 (2009).

$Fe_{1+\delta}Se:$ Characterization

- Superconductivity (s.c.) in FeSe systems depends sensitively on stoichiometry

3

- No significant differences in ⁵⁷Fe-ME spectra between β -Fe_{1.01}Se and β -Fe_{1.03}Se
- Both s.c. and non-s.c. samples are non-magnetic, no sign of magnetic ordering

Tetrag.-orthor. transition in Fe_{1.01}Se at ca. 100 K

XRD scans of the (220) reflection in Fe_{1.01}Se show the appearance of the orthorhombic distortion.
This subtle distortion is not reflected in the ⁵⁷Fe-Mössbauer quadrupole spectra.

T.M. McQueen et al., PRL 103, 057002 (2009).

Normalized area under Mössbauer spectra is sensitive to the tetra.-orthor. transition. Fe binding is slighty softer in orthor. phase. V. Ksenofontov et al., unpublished.

Resistivity and Mössbauer spectra of Fe_{1.01}Se under high pressure

T_c increases from 8.5 K (0 GPa) to 36.7 K at 8.9 GPa

Very steep initial increase: $\delta T_c / \delta p = 12.6(8)$ K/GPa

Short History of Nuclear Resonant Scattering of SR

- <u>1958</u>: Detection of the Mössbauer effect by Rudolf L. Mößbauer
- <u>1974</u>: Proposal: Use of SR for MS by Stan Ruby
- <u>1985: Nuclear Bragg Scattering with SR</u> by Erich Gerdau, Rudolf Rüffer et al.

- <u>1991: Nuclear Forward Scattering, NFS</u> (SMS) J.B. Hastings et al.
- <u>1995</u>: NFS under pressure (H.F. Grünsteudel et al.) Magnetism in the Mbar range in RFe₂ (Rainer Lübbers et al.)
- 1995: Nuclear Inelastic Scattering, NIS: M. Seto, W. Sturhahn, E.E. Alp

Phonons in iron under pressure with

NIS:

<u>2000</u>: R. Lübbers et al., up to 40 GPa, ESRF <u>2001</u>: H.-K. Mao et al., up to 153 GPa, APS meV monochromators fast detectors (ns)

HP with ⁵⁷Fe,¹¹⁹Sn, ¹⁴⁹Sm, ¹⁵¹Eu, ..

NFS and NIS of synchrotron radiation

NFS: determination of hyperfine interactions NIS: determination of the local phonon DOS at the Mössbauer atom

⁵⁷Fe-NIS studies performed with a resolution of 0.75 meV at 14.4 keV at beamline ID18 of ESRF

⁵⁷Fe-NIS spectra of Fe_{1.01}Se at 295 K (full circles) and at 10 K (open circles)

V. Ksenofontov, G.W., A.I. Chumakov et al., PRB **81**, 184510 (2010)

⁵⁷Fe phonon-DOS in sc Fe_{1.01}Se as function of T and P

- Fe-partial phonon-DOS g(E) for Fe_{1.01}Se at different temperatures (above) and at a pressure of 6.7 GPa at 296 K (below). At 10 K, resolved optical modes are indicated, f.i. the B_{1g} Raman mode at 25.5 meV, labeled (5).

- Lowering of temperature results in a sharpening of the spectral features and an increase of the mode energies by ~4%.

-- No significant changes between the spectra at 110 K (tetr. phase) and 66 K (orthorh. phase).

-- Application of 6.7 GPa ($\Delta V \sim 14\%$) at 296 K leads to strong increases of the energies of the optical modes by ~12%, and larger shifts of the acoustic modes by ~30% for mode (1) and ~14% for mode (2).

Ref. 8 of abstract, now published: V. Ksenofontov, G.W., et al., PRB 81, 184510 (2010).

⁵⁷Fe-NIS studies of local phonon DOS in sc Fe_{1.01}Se: Comparison with theory and INS

<u>Above</u>: Calculated dispersion relations and total phonon-DOS in FeSe by N. Nakamura et al., Physica C 469, 1024 (2009).
Similar calculations: A. Subedi et al., PRB 78, 134514 (2008).
The optical modes are quite well described, energies ~10% too large, acoustic mode energies differ considerably due to soft c-axis with complex interlayer interactions, similar to ¹¹⁹Sn-NIS studies of SnO with the same PbO-structure: H. Giefers et al., PRB 74, 094303 (2006).

- Present ⁵⁷Fe-NIS data compare well with an INS study of FeSe, measuring the *total* phonon-DOS as function of temperature: D. Phelan et al., PRB 78, 134514 (2008).

Fe phonon-DOS in FeSe compared with FeSe_{0.5}Te_{0.5} X-tals* *100% enriched in ⁵⁷Fe, from V. Tsurkan, J. Deisenhofer, A. Loidl (Univ. Augsburg)

Optical modes adjusted by 5 Gaussians (#4-9): PRB 81, 184510 (2010).

By Te substitution, strong shift of all modes to lower energy, caused by combined (not additive) effcts of:

- lattice expansion of ~10%
 (negative pressure of ~5 GPa)
- increase of the effective mass m* by ~8%.

All spectral features of FeSe present, but with strong polarisation dependence, allowing an assignment of modes. Spectral features are broadened by Te substitution and by higher temperature (296 K).

V. Ksenofontov et al., unpubl.

Fe phonon-DOS in FeSe_{0.5}Te_{0.5}: temperature dependence

 $FeSe_{0.5}Te_{0.5}$ polycryst sample with strong texture, as evident from X-tal sample with $\gamma \perp c$ -axis.

Same principal behaviour as for T-dependent phonon-DOS of FeSe:

(i) sharpening of spectral features and(ii) shift to higher energies by ~4% by loweringtemperature from 295 K to 10 K.

Subtle changes in phonon-DOS above/below $T_c = 14$ K and above below tetr./orthorh. p.t. are still under investigation.

V. Ksenofontov et al., in preparation.

⁵⁷Fe reduced phonon-DOS, g(E)/E² vs. E, in sc Fe_{1.01}Se as function of pressure, and derived elastic properties

Fe-partial phonon-DOS, $g(E)/E^2$ for Fe_{1.01}Se at 295 K, demonstrating for the low-energy range the strong modification of the lowest acoustic mode at 5 meV under pressure, attributed to vibrations along the "soft" c-axis.

⁵⁷Fe reduced phonon-DOS, g(E)/E² vs. E, in sc FeSe_{0.5}Te_{0.5} as function of crystal orientation

- Fe-partial phonon-DOS, $g(E)/E^2$, for FeSe_{0.5}Te_{0.5} at 295 K, demonstrating the strong modification of the acoustic modes in different X-tal directions:

- The "soft" mode, now at 4.5 meV, reflects the high c-axis compressibility.
- Preliminary evaluation, shown is the projected phonon-DOS with $g(E) \sim \cos^2(k,c)$

Pressure effect on T_c in Fe_{1.01}Se

$$T_{C} = \frac{\Theta_{D}}{1.45} \exp[-\frac{1.04(1+\lambda)}{\lambda - \mu^{*}(1+0.62\lambda)}]$$

 $\mu^{*} \cong$ 0.1 - Coulomb pseudopotential $\Theta_{\rm D}$ = 285(4) K

 $T_{c} \cong 8.0 \text{ K corresponds to } \lambda = 0.65(1)$ Electron-phonon coupling constant $\lambda \sim \langle \omega^{-2} \rangle$ Theory: $\lambda = 0.1$ (D. J. Singh)
Experiment: $\lambda = 0.21$ for LaOFeAs (L. Boeri) $\lambda = 1.3$ for PrFeAsO_{1-x}F_x (D. Bhoi)

Pronounced increase of T_c in $Fe_{1.01}$ Se with pressure cannot be described in the framework of classical electron-phonon coupling, which accounts for only ~15%. $\Rightarrow <u>Unconventional superconductivity</u>$ connected with:

- afm spin fluctuations (77Se-NMR): T. Imai et al., PRL 102, 177055 (2009).
- Se (As) anion height: H. Okabe et al., arXiv:1002.1832v2 (2010).
- Fe-Se bonding angle
- A. Subedi, L. Zhang, D.J. Singh, M.H. Du, Phys. Rev. B 78, 134514 (2008).
- L. Boeri, O.V. Dolgov, and A.A. Golubov, Phys. Rev. Lett. 101, 026403 (2008).
- D. Bhoi, P. Mandal, and P. Choudhury, Supercond. Sci. Technol. 21, 125021 (2008).

Conclusions

- ⁵⁷Fe-NIS spectra of s.c. FeSe and $\text{FeSe}_{0.5}\text{Te}_{0.5}$ deliver detailed information about the temperature and pressure dependence of the local phonon-DOS, which can be used to prove theoretical calculations of these properties.
- Pressure effects on phonon-DOS of $Fe_{1.01}$ Se alone does not explain the extremely strong increase of T_c with pressure: Unconventional superconducvtivity.
- -Single X-tals of $\text{FeSe}_{0.5}\text{Te}_{0.5}$ demonstrate anisotropic elastic properties of the lattice and can be used for an assignment of different modes.
- -Future work, also on FeSe X-tals, will be devoted to unravel possible connection of certain phonon modes with s.c. mechanisms.

Acknowledgements:

Uni Mainz (Inst. Anorg. Analyt. Chemie): Vadim Ksenofontov, T. Gasi, F. Casper, Claudia Felser

MPI Chemistry Mainz: Sergej Medvedev, I.A. Trojan, T. Palayuk, M.I. Eremets

Department Chemistry, Princeton: Tyrel M. McQueen, R.J. Cava (Fe_{1.01}Se samples)

Institut Physik, Uni Augsburg: V. Tsurkan, J. Deisenhofer. A. Loidl (FeSe_{0.5}Te_{0.5} samples)

Thank you for your attention