Measuring the magnetic properties of monolayers of single molecule magnets

Zaher Salman

Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute

HFI/NQI 2010 – CERN, 12th-17th September 2010

Outline

Introduction

- Single Molecule Magnets (SMMs)
- Monolayers of SMMs

•Low energy μSR and β -NMR

- Low Energy β -NMR Measurements
- Low Energy μ SR Measurements
- •Summary and Conclusions

Single Molecule Magnets

$$\boldsymbol{H} = -\boldsymbol{D}\boldsymbol{S}_{z}^{2} - \boldsymbol{g}\boldsymbol{\mu}_{B}\boldsymbol{H}_{z}\boldsymbol{S}_{z}$$

D=0.64 K, *S*=5, *DS*²=16 K

Magnetic Properties of SMMs

Monolayers of Fe₄ on Si and Au

Mannini et al, Nature Mater. 8, 194–197 (2009)

Why Monolayers of SMMs

Motivation to use SMM Mono-layers

•Any potential future application requires addressing individual molecule

•Allows controlling geometry and environmental effects, e.g. dipolar coupling.

Difficulties

•Cannot be studied by conventional bulk techniques such as magnetometry and NMR.

How do we measure their magnetic properties?

Magnetic Resonance Methods - Comparison

	NMR	μSR	LE-μSR <mark>β–nmr</mark>
Polarization	<0.01	~1 >0.65	
Detection Method	Electronic pickup	Anisotropic β decay	
Sensitivity	10 ¹⁷ spins	10 ⁷ spins	
T_1 range(s)	10 ⁻⁵ - 10 ²	10 ⁻⁸ — 10 ⁻⁴	$\frac{10^{-8} - 10^{-4}}{10^{-3} - 10^3}$
Range	N/A	0.5 mm	10 Å – 4000 Å
Applied field	high	any	any

The µSR Technique

The β -NMR Technique

What does the spin probe see?

Dipolar Fields in the Substrate


```
\beta-NMR in Fe<sub>4</sub> on Si
```


What do we measure ?

β -NMR in Fe₄ on Si

LE- μ SR in Fe₄ monolayer on gold

Salman et al, arXiv:0909.4634v1

µSR (Bulk) and LE-µSR (Monolayer) Measurements

In the bulk we observe static magnetic fields below ~20 K.

The relaxation rate in Fe_4/Au scales with the relaxation rate in bulk Fe_4 .

There is a exponential T shift between LE- μ SR compared to bulk μ SR measurements.

µSR (Bulk) and LE-µSR (Monolayer) Measurements

Scaling bulk/monolayer results:

Dipolar fields 300/1, i.e. the muons are \sim 7 times further from Fe₄

For bulk we know $J_i=23.6 \text{ K}$ To scale monolayer with bulk $J_i=37(1) \text{ K}$

$$J_i$$
 is ~60% Larger in the Monolayer

Summary and conclusions

•Low energy μ SR and β -NMR can be used a "proximal" magnetometers. Sensitive enough to measure monolayers of magnetic material.

•Fe₄ SMMs exhibit SMM properties even in monolayers.

•The energy scale of Fe_4 spin states seem to differ from bulk.

Acknowledgements

β-NMR

University of British Columbia: R.F. Kiefl, W.A. MacFarlane T.J. Parolin T. Keeler D. Wang M.D. Hussain

University of Alberta: K.H. Chow

LEM

PSI: T. Prokscha A. Suter E. Morenzoni H. Saadaui

Oxford University: S. J. Blundell

ISIS/RAL: S. R. Giblin

Samples

University of Florence:

R. Sessoli M. Mannini L. Margheriti

University of Catania: G. G. Condorelli

and thank you ...

Fe₄ Spin Hamiltonian

$$H_{0} = J_{i}S_{0} \cdot \sum_{k}S_{k} + J_{e}[S_{1} \cdot S_{2} + S_{2} \cdot S_{3} + S_{3} \cdot S_{1}]$$

$$J_{i}=23.6 \text{ K}$$

$$J_{e}=-1.5 \text{ K}$$

At high T the energy scale is determined mainly by the J_i

No surprise there is a difference between SMM in bulk and monolayer.

But why? Is it really a change in J_i ?

How?

µSR (Bulk) and LE-µSR (Monolayer) Measurements

Scaling bulk/monolayer results:

Dipolar fields 300/1, i.e. the muons are \sim 7 times further from Fe₄

 $J_{i} = 23.6$ K

25 $B_0 = 8.3 \text{ mT}$ 20 Monolayer Bulk 15 ∆ [MHz] 10 5 30 $B_0 = 110 \text{ mT}$ 25 Monolayer Bulk 20 15 $\lambda [\mu sec^{-1}]$ 10 5 0.1 10 T/J_i

For bulk we know $J_i=23.6 \text{ K}$

Differences: Fe₄ vs. Mn₁₂

