Recent progress with Low Temperature Nuclear Orientation and NMR/ON

Weak interaction studies

- parity violation ^{180m}Hf
- weak tensor currents ⁶⁰Co, ¹¹⁴In, ⁶⁷Cu

2. Nuclear Magnetic Resonance on Oriented Nuclei

Nuclear magnetic moments

- Cu isotopes
- Ag isotopes
- Sc isotopes
- Hf isotopes

Hyperfine anomaly

- Sc isotopes

Hyperfine fields

- Rb in Fe host

Weak interaction studies

- parity violation ^{180m}Hf
- weak tensor currents ⁶⁰Co, ¹¹⁴In, ⁶⁷Cu

2. Nuclear Magnetic Resonance on Oriented Nuclei

Nuclear magnetic moments

- Cu isotopes
- Ag isotopes
- Sc isotopes

Hyperfine anomaly

- Sc isotopes

Hyperfine fields

- Rb in Fe host

To wave generator

angular distribution :

$$W(\theta) = \frac{N(\theta)_{cold}}{N(\theta)_{warm}}$$

= 1 + f $\sum_{k=2,4}^{N(\theta)} A_k U_k B_k(\mu B, I, T) Q_k P_k(\cos \theta)$

detection set-up

 γ detectors: large volume HPGe α , β detectors: Si p-i-n, HPGe, scintillators

D. Venos et al., NIM A 454 (2000) 403				
D. Zákoucký, et al., NIM A 520 (2004) 80				
F. Wauters et al., NIM A 604 (2009) 563				

Parity non-conservation in nuclei: ^{180m}Hf revisited (IS 429)

Oxford Univ., K.U.Leuven, Weizmann Institute, ...

Hamiltonian for nuclear system: $H = H_0 + H_{PNC}$ H_0 : regular strong nucleon-nucleon Hamiltonian H_{PNC} : PNC weak Hamiltonian

 $H_{PNC} \cong 10^{-7} H_0 \rightarrow PNC$ part only visible if e.g. regular (γ -)transition hindered

J.R. Stone et al., PR C 76 (2007) 025502

case of ^{180m}Hf

- mixture of 8⁻ (K = 8) and
 8⁺ (K = 0) states (∆E =57 keV)
- regular transition strongly suppressed by K = 8 difference
- detect mixing by non-zero E2 component in M2/E3 mixed 501 keV γ-ray

$$\mathcal{A}(T) = 2 \frac{W(0^{\circ}, T) - W(180^{\circ}, T)}{W(0^{\circ}, T) + W(180^{\circ}, T)} = \frac{2 \sum_{\lambda odd} f B_{\lambda}(T) U_{\lambda} A_{\lambda} Q_{\lambda} P_{\lambda}(\cos\theta)}{1 + \sum_{\lambda even} f B_{\lambda}(T) U_{\lambda} A_{\lambda} Q_{\lambda} P_{\lambda}(\cos\theta)} \propto \frac{\left\langle \left| \mathbf{H}_{PNC} \right| \right\rangle^{2}}{\left\langle \left| \mathbf{H}_{0} \right| \right\rangle^{2}}$$

Search for weak tensor currents: β asymmetry parameter (IS 431)

K.U.Leuven, NPI-Rez (Prague), ...

Leuven ³He - ⁴He dilution refrigerator setup

I.S. Kraev et al., NIM A 555 (2005) 420

Geant 4 simulation code

GEANT4 has to take care of :

- scattering effects
- energy loss
- magnetic field effects
- ...
- use low energy packages
- tune GEANT4 parameters to get optimal performance for β particles
- → compare GEANT4 with well controlled experimental data for :
 - \rightarrow different scattering conditions
 - \rightarrow different magnetic fields
 - \rightarrow detectors used (Si p-I-n / HPGe)

F. Wauters et al., NIM A 609 (2009) 156

Neak interaction studies

- parity violation ^{180m}Hf
- weak tensor currents ⁶⁰Co, ¹¹⁴In, ⁶⁷Cu

2. Nuclear Magnetic Resonance on Oriented Nuclei

Nuclear magnetic moments

- Cu isotopes
- Ag isotopes
- Sc isotopes
- Hf isotopes

Hyperfine anomaly

- Sc isotopes

Hyperfine fields

- Rb in Fe host

2. Nuclear Magnetic Resonance on Oriented Nuclei - NMR/ON

principle :

Magnetic moments: Cu isotopes (IS358, IS381)

Oxford Univ., Maryland Univ., ... and K.U.Leuven, NPI-Rez (Prague), Univ. Bonn, ...

Magnetic moments: Ag isotopes (IS381)

K.U.Leuven, NPI-Rez (Prague), Univ. Bonn, ...

V.V. Golovko et al., PR C 81 (2010) 054323

provided info on mixing of the $(\pi g_{9/2})_{7/2^+}^{-3}$ and $(\pi g_{9/2})_{9/2^+}^{-3}$ proton hole groups each coupled to the $(\nu d_{5/2}\nu g_{7/2})_{5/2^+}^n$ neutron configuration

Magnetic moments: Hf isotopes (IS460)

Oxford Univ., Maryland Univ., CSNSM-Orsay, ILL-LPSC Grenoble, Niigata Univ., ...

Magnetic moments: Sc isotopes

Niigata Univ., Toyama Univ., KEK, ...

- theoretical moment values (3.36 3.51 μ_N ; Honma 2004, van der Merwe 1994) systematically too low;
- comparison of experimental and theoretical moment values for ⁴⁷Ca and ⁴⁷Sc shows that the quenching of magnetic moments for the $\pi(f_{7/2})$ configuration around the ⁴⁸Ca core is overestimated in the calculations \rightarrow more theoretical work needed

Hyperfine anomalies: Sc isotopes

Niigata Univ., Toyama Univ., KEK, Tohoku Univ.

S. Ohya et al., Hyp. Int. 180 (2007) 55

arises from hf interaction of : radially distributed nuclear magnetization over finite nuclear volume and hyperfine field due to Fermi contact interaction

for single isotope defined as :

 $\mathbf{B}_{\rm hf} = \mathbf{B}_0 \left(\mathbf{1} + \boldsymbol{\varepsilon}_{\rm i} \right)$

difference for two isotopes:

 $^{1}\Delta^{2} = \varepsilon_{1} - \varepsilon_{2}$

comparison with theory indicates many-configuration mixing

Isotope (A)	I^{π}	$\mu_{exp}(\mu_N)$ (Ref. [1])	$B_{\rm hf}$ (T)	$^{A}\Delta^{47}(\%)$
⁴⁷ Sc	7/2-	+5.34 (2)	-13.17 (5)	
⁴⁴ Sc	2+	+2.56(3)	-13.17 (15)	0.0 (12)
^{44m} Sc	6+	+3.88(1)	-13.33 (4)	1.2 (4)
⁴⁶ Sc	4+	+3.03 (2)	-13.52 (9)	2.7 (8)

Hyperfine fields: Rb in Fe host (IS 431)

K.U.Leuven, NPI-Rez (Prague), Niigata Univ., ...

F. Wauters et al.

Weak interaction studies

- parity violation ^{180m}Hf
- weak tensor currents ⁶⁰Co, ¹¹⁴In, ⁶⁷Cu

2. Nuclear Magnetic Resonance on Oriented Nuclei

Nuclear magnetic moments

- Cu isotopes
- Ag isotopes
- Sc isotopes

Hyperfine anomaly

- Sc isotopes

Hyperfine fields

- Rb in Fe host

Polarex nuclear orientation facility

CSNSM-Orsay, Oxford Univ., Maryland Univ., ...

- new on-line NO setup at ALTO facility in Orsay to study properties of fission isotopes
- will focus mainly on nuclear magnetic moments
- first cases: ⁸³⁻⁸⁶Br isotopes and heavier Pm isotopes

atus: assembled at CSNSM-Orsay commissioning (cf. poster) L. Risegari et al., Eur. Phys. J. A 42 (2009) 307

Weak interaction studies

- parity violation ^{180m}Hf
- weak tensor currents ⁶⁰Co, ¹¹⁴In, ⁶⁷Cu

2. Nuclear Magnetic Resonance on Oriented Nuclei

Nuclear magnetic moments

- Cu isotopes
- Ag isotopes
- Sc isotopes
- Hf isotopes

Hyperfine anomaly

- Sc isotopes

Hyperfine fields

- Rb in Fe host