Precise Nuclear Moments of Extremely Proton-Rich Nuclei ²³Al

Takashi NAGATOMO International Christian University (Japan)

<u>Collaborators</u>

Osaka University (Japan) : K. Matsuta, M. Mihara, M. Fukuda RIKEN Nishina Center (Japan) : H. Ueno, A. Yoshimi, Y. Ichikawa, H. Kawamura University of Tsukuba (Japan) : A. Ozawa, T. Moriguchi, Y. Ishibashi Tokyo Institute of Technology (Japan) : A. Asahi, M. Uchida, K. Suzuki, T. Inoue, Y. Hasama, H. Iijima

Tokyo University of Science (Japan) : T. Sumikama Fukui University of Technology (Japan) : T. Minamisono

• Extremely small proton-separation energy $S_P = 125 \text{ keV}$

- Extremely small proton-separation energy $S_P = 125 \text{ keV}$
- Large Reaction Cross section X.Z Cai et.al, Phys.Rev. C65, 024610 (2002)

- Extremely small proton-separation energy $S_P = 125 \text{ keV}$
- Large Reaction Cross section X.Z Cai et.al, Phys.Rev. C65, 024610 (2002)

- Extremely small proton-separation energy $S_P = 125 \text{ keV}$
- Large Reaction Cross section X.Z Cai et.al, Phys.Rev. C65, 024610 (2002)

• β decay and μ -moment

 β decay : K. Peräjärvi et.al, Phys. Lett. B65, 1, (2000) μ -moment : A. Ozawa et.al, Phys.Rev. C74, 021301(R) (2006)

- Extremely small proton-separation energy $S_P = 125 \text{ keV}$
- Large Reaction Cross section X.Z Cai et.al, Phys.Rev. C65, 024610 (2002)

Proton-halo?

 $I^{\pi} = 5/2^+$

• β decay and μ -moment

 β decay : K. Peräjärvi et.al, Phys. Lett. B65, 1, (2000) μ -moment : A. Ozawa et.al, Phys.Rev. C74, 021301(R) (2006)

- Extremely small proton-separation energy $S_P = 125 \text{ keV}$
- Large Reaction Cross section X.Z Cai et.al, Phys.Rev. C65, 024610 (2002)

 $I^{\pi} = 5/2^+$

• β decay and μ -moment

 β decay : K. Peräjärvi et.al, Phys. Lett. B65, 1, (2000) μ -moment : A. Ozawa et.al, Phys.Rev. C74, 021301(R) (2006)

• Mirror nucleus 23 Ne $(I^{\pi}=5/2^+)$ μ -moment : R. Matsumiya et al, OULNS Ann. Rep. 04, p.51 (2006) Next to stability line : NO exotic structure

- Extremely small proton-separation energy $S_P = 125 \text{ keV}$
- Large Reaction Cross section X.Z Cai et.al, Phys.Rev. C65, 024610 (2002)

• β decay and μ -moment

 β decay : K. Peräjärvi et.al, Phys. Lett. B65, 1, (2000) μ -moment : A. Ozawa et.al, Phys.Rev. C74, 021301(R) (2006)

• Mirror nucleus ²³Ne ($I^{\pi}=5/2^+$)

 μ -moment : R. Matsumiya et al, OULNS Ann. Rep. 04, p.51 (2006) Next to stability line : NO exotic structure Charge-symmetry braking ?

 $I^{\pi} = 5/2^+$

Proton-halo?

Q moment of ²³Al

Q-moment : $Q = \sqrt{16\pi/5} < r^2Y_2$ → Charge deformation (shape)

direct information of **Shape of Nucleus** Anomalous Q should be seen ... if ²³Al has an exotic structure

Q moment of ²³Al

Q-moment : $Q = \sqrt{16\pi/5} < r^2Y_2$ → Charge deformation (shape)

direct information of Shape of Nucleus

Anomalous Q should be seen ... if ²³Al has an exotic structure

β-NQR measurement on ²³Al in α-Al₂O₃ at RIBF of RIKEN Nishina Center

²⁴Mg (100MeV/u, 50 pnA (typ.))

To polarize ²³Al ...

To polarize ²³Al ... $\theta = (3.0 \pm 2.6)^{\circ}$

To polarize ²³Al ... $\theta = (3.0 \pm 2.6)^{\circ}$ $\Delta p/p_0 = -(2.05 \pm 1.75)\%$ (p_0 \leftarrow beam velocity)

To polarize ²³Al ... $\theta = (3.0 \pm 2.6)^{\circ}$ $\Delta p/p_0 = -(2.05 \pm 1.75)\%$ (p₀ ← beam velocity)

Polarization ~ 1%

β-NMR/NQR Setups

β-NMR/NQR Setups

β-NMR Technique

Al substitutional site $|eqQ(^{27}AI)/h| = 2389(2) \text{ kHz}$ $\eta \sim 0$ S.J. Gravina et al, J. Mag. Reson. 89, p515 (1990)

 $|Q(^{27}AI)| = 146.6 (10) \text{ mb}$

V. Kellö et al, Chem. Phys. Lett. 304, p414 (1999)

Asymmetry Change = $\frac{U/D(v_Q)}{U/D_{no R.F.}} - I$

$$v_Q = \frac{3}{20} \frac{eqQ}{h}$$

Asymmetry Change = $\frac{U/D(v_Q)}{U/D_{no R.F.}}$ – I

 $v_Q = \frac{3}{20} \frac{eqQ}{h}$

Asymmetry Change = $\frac{U/D(v_Q)}{U/D_{\text{no R.F.}}} - I$

 $v_Q = \frac{3}{20} \frac{eqQ}{h}$

 $|v_Q(^{23}A1)| = 409(22) \text{ kHz}$

Asymmetry Change = $\frac{U/D(\nu_Q)}{U/D_{\text{no R.F.}}} - I$

 $v_Q = \frac{3}{20} \frac{eqQ}{h}$

 $|v_Q(^{23}A1)| = 409(22) \text{ kHz}$

|eqQ(²⁷Al)/h| = 2389(2) kHz S.J. Gravina et al, J. Mag. Reson. 89 p515 (1990)

Asymmetry Change = $\frac{U/D(\nu_Q)}{U/D_{\text{no R.F.}}} - I$

 $v_Q = \frac{3}{20} \frac{eqQ}{h}$

 $|v_Q(^{23}A1)| = 409(22) \text{ kHz}$

 $|eqQ(^{27}AI)/h| = 2389(2) kHz$ S.J. Gravina et al, J. Mag. Reson. 89 p515 (1990) $|Q(^{27}AI)| = 146.6 (10) mb$

V. Kellö et al, Chem. Phys. Lett. 304 p414 (1999)

Asymmetry Change = $\frac{U/D(\nu_Q)}{U/D_{\text{no R.F.}}} - I$

 $v_Q = \frac{3}{20} \frac{eqQ}{h}$

 $|v_Q(^{23}A1)| = 409(22) \text{ kHz}$

|eqQ(²⁷Al)/h| = 2389(2) kHz
S.J. Gravina et al, J. Mag. Reson. 89
p515 (1990)

 $|Q(^{27}AI)| = |46.6 (10) mb$ V. Kellö et al, Chem. Phys. Lett. 304 p414 (1999)

 $|Q(^{23}AI)| = 167.5 (90) \text{ mb}$

 $v_{\rm L}(^{23}{\rm Al}) = 5419.3$ (3) kHz

 $\nu_{\rm L}(^{23}{\rm Al}) = 5419.3$ (3) kHz as a reference ... ²⁵Al in Si $I^{\pi}(^{25}{\rm Al}) = 5/2^+$ $|\mu(^{25}{\rm Al})| = 3.6455(12) \mu_{\rm N}$ T. Minamisono et al, Phys.Rev.C 14, p.376 (1976).

 $v_L({}^{23}Al) = 5419.3 (3) \text{ kHz}$ as a reference ... ${}^{25}Al$ in Si $I^{\pi}({}^{25}Al) = 5/2^+$ $|\mu({}^{25}Al)| = 3.6455(12) \mu_N$ T. Minamisono et al, Phys.Rev.C 14, p.376 (1976). $v_L({}^{25}Al) = 5481.1 (5) \text{ kHz}$

 $v_{\rm L}(^{23}{\rm A1}) = 5419.3$ (3) kHz as a reference ... ²⁵Al in Si $I^{\pi(25}A1) = 5/2^+$ $|\mu(^{25}\text{Al})| = 3.6455(12) \ \mu_{\text{N}}$ T. Minamisono et al, Phys.Rev.C 14, p.376 (1976). $v_{\rm L}(^{25}{\rm Al}) = 5481.1$ (5) kHz

 $|\mu(^{23}\text{A1})| = 3.8881(14) \ \mu_{\text{N}}$

 $v_{\rm L}(^{23}{\rm Al}) = 5419.3$ (3) kHz as a reference ... ²⁵Al in Si $I^{\pi(25}A1) = 5/2^+$ $|\mu(^{25}\text{Al})| = 3.6455(12) \ \mu_{\text{N}}$ T. Minamisono et al, Phys.Rev.C 14, p.376 (1976). $v_{\rm L}(^{25}{\rm Al}) = 5481.1$ (5) kHz $|\mu(^{23}A1)| = 3.8881(14) \ \mu_N$ $|\mu(^{23}A1)| = 3.89(22) \ \mu_N \text{ (previous)}$

A. Ozawa et al, Phys.Rev. C74, 021301(R) (2006).

Comparing with Mirror Nuclei

nucleus	$ \mu_{ ext{exp.}} (\mu_N)$	$\mu_{ extbf{a}}(\mu_N)$	$\mu_{ m b}(\mu_N)$	$ Q_{\text{exp.}} $ (mb)	$Q_{\rm a}~({\rm mb})$	$Q_{\rm b}({ m mb})$
$^{23}{ m Al}$ $^{23}{ m Ne}$	3.888(2) 1.0817(9) *	+3.824 -1.013	+3.865 -1.050	- 168(9)	+166 ** +148 **	+167 ** +149 **

* R. Matsumiya et al, OULNS Annual Report 2004, p.51 (2006) ** effective charge ; $e_p = 1.3e$, $e_n = 0.5e$

Shell model calculation : USDa, USDb Hamiltonian : Charge symmetry

Comparing with Mirror Nuclei

nucleus	$ \mu_{ ext{exp.}} (\mu_N)$	$\mu_{\mathrm{a}}(\mu_N)$	$\mu_{ m b}(\mu_N)$	$ Q_{\text{exp.}} $ (mb)	$Q_{\rm a} ({\rm mb})$	$Q_{\rm b}({ m mb})$
$^{23}{ m Al}$ $^{23}{ m Ne}$	3.888(2) 1.0817(9) *	$+3.824 \\ -1.013$	+3.865 -1.050	- 168(9)	+166 ** +148 **	+167 ** +149 **

* R. Matsumiya et al, OULNS Annual Report 2004, p.51 (2006) ** effective charge ; $e_p = 1.3e$, $e_n = 0.5e$

Shell model calculation : USDa, USDb Hamiltonian : Charge symmetry

μ(²³Al), μ(²³Ne) and Q(²³Al) are well reproduced by the within the sd-shell model space

Comparing with Mirror Nuclei

nucleus	$ \mu_{ ext{exp.}} (\mu_N)$	$\mu_{\mathrm{a}}(\mu_N)$	$\mu_{ m b}(\mu_N)$	$ Q_{\text{exp.}} $ (mb)	$Q_{\rm a} ({\rm mb})$	$Q_{\rm b}({ m mb})$
$^{23}{ m Al}$ $^{23}{ m Ne}$	3.888(2) 1.0817(9) *	$+3.824 \\ -1.013$	+3.865 -1.050	- 168(9)	+166 ** +148 **	+167 ** +149 **

* R. Matsumiya et al, OULNS Annual Report 2004, p.51 (2006) ** effective charge ; $e_p = 1.3e$, $e_n = 0.5e$

Shell model calculation : USDa, USDb Hamiltonian : Charge symmetry

μ(²³Al), μ(²³Ne) and Q(²³Al) are well reproduced by the within the sd-shell model space

Normal structure

Deformed Parameter β_2 in Al isotopes

Relativistic Mean Field Theory

β₂(^{23,27}Al) are consistent with predictions

Deformed Parameter β_2 in Al isotopes

Relativistic Mean Field Theory

β₂(^{23,27}Al) are consistent with predictions

Normal structure

 β-NQR on ²³Al in Al₂O₃ has been done at RIBF of RIKEN Nishina Center

- β-NQR on ²³Al in Al₂O₃ has been done at RIBF of RIKEN Nishina Center
- $|V_Q(^{23}AI)| = 409(22) \text{ kHz}$

- β-NQR on ²³Al in Al₂O₃ has been done at RIBF of RIKEN Nishina Center
- $|V_Q(^{23}AI)| = 409(22) \text{ kHz}$
- |μ(²³Al)| = 3.8881(14) μ_N from NMR of ²³Al
 in Si

- β-NQR on ²³Al in Al₂O₃ has been done at RIBF of RIKEN Nishina Center
- $|V_Q(^{23}AI)| = 409(22) \text{ kHz}$
- $|\mu(^{23}AI)| = 3.888I(14) \mu_N \text{ from NMR of }^{23}AI$ in Si
- $|Q(^{23}AI)| = 167.5$ (90) mb, ref. ²⁷AI in Al₂O₃

- β-NQR on ²³Al in Al₂O₃ has been done at RIBF of RIKEN Nishina Center
- $|v_Q(^{23}AI)| = 409(22) \text{ kHz}$
- |μ(²³Al)| = 3.8881(14) μ_N from NMR of ²³Al
 in Si
- $|Q(^{23}AI)| = 167.5$ (90) mb, ref. ²⁷AI in Al₂O₃

No evident signal of the exotic structure have been seen despite of the extremely small Sp = 125 keV.

Thank you for your attention!

