Recent advances in Emission Channeling measurements and relevance to Hyperfine Interactions

J.G.Correia on behalf of IS453 **EC-SLI** experiment **E**mission Channeling with Short-Lived Isotopes

HFI/NQI 201012-17

September 2010 CERN

OUTLINE

ABOUT EMMISSION CHANNELING *principles and recent progress*

LATTICE LOCATION CASE STUDIES ¹²¹Sn (27h) : Ge (off-line) ⁵⁶Mn (2.6h) : Ge (on-line) ²⁷Mg(9.46m) : GaN, AIN (on-line preliminary)

"BRIEF BRIEFING"

of Timepix 512x512 ch detectors (high position resolution + energy)

Interest of accurate impurity lattice location studies

Functional properties of impurities are influenced by lattice location
 Local crystal field near impurity influences electronic configuration, magnetic spin
 High quality input information for atomic scale models and simulations

EMMISSION CHANNELING ALLOWS:

- determining lattice sites of impurities in **single-crystalline** materials
- **usubstitutional** site vs. many different interstitial sites

. . .

- **quantitative** determination
- highly sensitive: down to ppm range
- □ lattice location accuracy: down to 0.1 0.2 Å
- **unique worldwide**

(a consequence of the variety and purity of ISOLDE radioactive beams combined with position sensitive electron detectors)

Channeling (RBS/C) versus Emission Channeling

positively charged particles: channeling in between rows of atoms

EMISSION CHANNELING

The particle emmiter is INSIDE the sample

DETECTOR

Electron Emission Channeling

- **negatively** charged particles
- \Box electrons are emitted by **radioactive** isotope (C.E. or β -)
- □ channeling or blocking effect depends on lattice location of impurity
- □ anisotropic electron emission

Emission Channeling Detection and Analysis

- □ 2D energy- and position-sensitive detector
- \Box analysis = fitting experimental pattern to library of calculated patterns

What do you need to do Emission Channeling

Si PAD electron detectors

5μm kapton 2μm SiO2 0.3mm p (B) implant

Good energy resolution ~3 keV Large pad – 1.4x1.4 mm2 Dead / unbonded channels Leakage current limiting depletion 15keV << E(e^{-}) << 300 keV Readout \rightarrow 200Hz ... 5 kHz(new)!!

collimators Aligning Iamo VacGen goniomete edthroughs sample Faraday cup beamollimator -14.0 Turbo Pump Shield actuator A AIS204 270.14.00 Manilok AIS[304 270 12 0 Collimator 1 AIS[304 + 270.201 Irradiation chambe AIS[304 270.11.0Pressure gauge 2d Designação Material N° de 30.00 Instituto Tecnológico e Nuclear 2685 Sacavém - Portuga 207.10.00 Câmara Isolde - Rv2 1:2 Turbo Pumping Chamber - front setup 71

New ITN on-line emission channeling setup: side view

- ISOLDE beam is collimated by 2 apertures (1st variable size, $2^{nd} \otimes 1$ mm) on the sample
- sample mounted in remote controlled 3-axis goniometer

New ITN on-line emission channeling setup: top view

- detector at 17° backward geometry for simultaneous implantation and measurement
- valve in front of detector allows to maintain detector vacuum during sample exchange
- lead shielding around 1st collimator lowers background

NEW on-line EC-SLI setup for short lived isotopes

Elements for which emission channeling experiments have been published

Th Pa U Np Pu AmCm Bk Cf Es Fm Md No Lr

2D emission patterns characterize specific lattice sites

2-dimensional

position- and energy

MOTIVATION

- group IV impurity = expected on S site in Ge
- no direct experimental info
- Sn-related defects \rightarrow important for growth of GeSn!

EXPERIMENTAL

- □ radioactive isotope: ¹²¹Sn (27 h)
- □ implantation @ ISOLDE (CERN, Geneva)
- \Box 60 keV, room temperature
- **G** fluence: $2 4 \square 10^{12} \text{ cm}^{-2}$
- measurements @ room temperature as implanted

after several annealing steps up to 500°C

(10 min in vacuum)

□ triangulation along 4 different directions: <111>, <100>, <110> and <211>

Decoster *et al.* PRB 81, 155204 (2010)

Ge lattice

{110} plane

RESULTS - Lattice location study of implanted ¹²¹Sn (27h) : Ge

Ab initio calculations for Sn defects complexes in Ge STABILITIES

Previous – controversial - publications Höhler et al., PRB 71, 035212 (2005) and Coutinho et al., PRB 73, 235213 (2006)

Ab initio calculations for Sn defects complexes in Ge Isomer shift and hyperfine parameters

	SIMULATIONS			Mossbauer				
	ΔH_f (eV)	$\delta_{(calc)} \ (ext{mm/s})$	$\Delta E_{Q(calc)}$ (mm/s)	Mössb spectroscop	auer by line ^{a,b}	$\delta_{(exp)}$ (mm/s)	$\Delta E_{Q(exp)}$ (mm/s)	
Sn _S	0.19	1.75	0.0	2	Sn(S)	1.90	0.0	
Sn _T	3.96	3.19	0.0	4	Sn(T)	3.27	0.0	
Sn _{BC} (split vacancy)	1.86	2.24	0.10	3	Sn(S)-V	2.36	0.3 ^a -0.4 ^b	
Sn _{BC} (no vacancies)	3.83	3.25	0.82					
Sn _S +Ge _T (self-int.)	3.51	1.84	0.64					
unknown				1	Sn(BC)-V	1.41	0.0	
				G. Weyer et al., Phys. Lett. 76A, 321(1980) G. Weyer et al., Hyp. Int. 10, 775 (1981) Damgaard, A. el atl., Phys. Scr. 22, 640 (1981)				

Good agreement for Sn on S and T site

Mossbauer values for "Sn(S)-V defect" is in very good agreement with Sn-V defect in split-vacancy configuration (i.e. with Sn_{BC}) !!

Study of Sn defects complexes in Ge CONCLUSIONS

□ From EC: Majority of Sn on S site + significant fraction on BC site
 □ From *ab initio* calculations:

- vacancies will be trapped by substitutional Sn
- Sn(S)-V defect relaxes towards split-vacancy configuration,
 i.e., Sn on BC site

creating vacancies \rightarrow Sn_s gets displaced to Sn_{BC}

Our experiments: Implantation creates many vacancies vacancy creation during MBE-growth of GeSn ?

Ventura et al., PRB 79, 155202 (2009): Split-vacancy defect in diluted GeSn could be nucleation point of metallic Sn

Lattice location study of implanted ⁵⁶Mn (2.6h) : Ge Implantation at 300°C

(accepted by Applied Physics Letters 2010)

Mn-doped Ge \rightarrow (?) \rightarrow spintronic devices, Mn_xGe_{1-x} \rightarrow ferromagnetic 25 and 116 K, TC increases linearly 0.6% <[Mn] < 3.5%.

Cho et al. showed ferromagnetic ordering in Ge_{0.94}Mn_{0.06} close to room temperature (285 K)2. The origin of ferromagnetism is not fully understood and has been related to Mn-rich precipitates.

First emission channeling experiments with ²⁷Mg(9.46m)

27Mg B- Decay, E(ave)=703.4 keV, E(max)=1766.6 keV

(no precise data analysis yet)

HIGHLY PIXILATED and energy resolving electron detectors TIMEPIX (MEDIPIX COLLABORATION @ CERN)

TIMEPIX 512 x 512 ch ; 30 x 30 mm² ; 300µm thick

Highly pixilated and ENERGY RESOLVING electron detectors TIMEPIX (MEDIPIX COLLABORATION @ CERN)

