HFI/NQI 2010, Sep 15, 2010

beta detected NMR: a new depth-resolved probe of materials at the nanoscale

W.A. MacFarlane

Chemistry Department University of British Columbia, Vancouver, Canada

TRIUMF

Downtown Vancouver

Outline

- 1. TRIUMF BNMR/BNQR facility
- 2. Why use βNMR to study materials ?

3. A few examples:

a. magnetic proximity effects in metalsb. spin injection, dilute magnetic semiconductorsc. interface properties of high Tc superconductors

1. The βNMR Method

Parity Violation

ß emission is correlated with the spin direction of the decaying nucleus,

violating mirror symmetry

Lee and Yang 1957

Asymmetric Nuclear β–decay of ⁸Li

Polar plot representing the beta emission probability as a function of angle

Isotopes for βNMR at ISAC

_	Isotope	Spin	$\tau_{1/2}$	γ (MHz/T)	β-Decay Asymmetry	Estimated Rate (s ⁻¹)
	⁸ Li	2	0.8	6.3	0.33	108
	¹¹ Be	1/2	13.8	22	~0.3	107
	¹⁵ O	1/2	122	10.8	0.66	108
	¹⁹ O	5/2	26.9	4.6	0.71	108
	¹⁷ Ne	1/2	0.1		0.33	106
require: light, short-lived, high asymmetry						

<u>βNMResonance</u>

<u>βNMR Measurement of the Spin Lattice Relaxation Rate</u>

TRIUMF Implementation

see

βNMR: Morris et al., Phys. Rev. Lett. **93**, 157601 (2004). βNQR: Salman et al., Phys. Rev. B **70**, 104404 (2004). facility: Kiefl et al., Physica B **326**, 189 (2003). polarizer: Levy et al., NIMB **204**, 689 (2003).

ISAC Production Target

Optical Polarizer

D1 in Li: 671 nm

Polarization of ⁸Li Nuclei in 4.1 T

Fast Kicker (2005) allows semi-simultaneous operation

βNMR Spectrometer

Loading a sample into the high-field β NMR spectrometer

Cryostat drives into solenoid bore (9 Tesla)

βNQR Spectrometer

Typical rate: ~10⁶ spin polarized ⁸Li⁺ per second

beam stopped in scintillator, imaged with CCD

βNQR sample ladder

βNMR Cleanroom

Uses:

Sample handlingUHV cryostatmaintenance

R. Abasalti

2. Why use βNMR to study materials?

Solid Interfaces

Deceleration of the Ion Beam

range in the probe ions: depth resolution!

Relation to Fundamental Properties

$$M = \chi H$$

Magnetic Susceptibility

$$\chi = \chi' - i\chi''$$

Shift:
$$\delta = A\chi'(0,0) \longleftarrow$$
 can be multicomponent
and/or inhomogeneous

Relaxation:

$$rac{1}{T_1} \propto kT \sum_{ar{q}} A^2(ar{q}) rac{\chi_{\perp}''(ar{q}, \omega_0)}{\omega_0}$$
 Moriya Expression
In the RF (µeV to zero)

also: quadrupolar effects, diamagnetic shielding, ...

3. Examples

Magnetic Proximity Effect

Depth Resolved BNMR in Magnetic Multilayers

- Ag/Fe epitaxial heterostructures
- T.A. Keeler et al., Phys. Rev. B 77, 144429 (2008)

e.g. Magnetic Proximity Effect

Metallic Ferromagnet

Nonmagnetic Metal

Using implanted ⁸Li β NMR, aymptotic behaviour of the envelope ~ r^{-2} Keeler et al. Phys. Rev. B **77**, 144429 (2008)

Fe

Epitaxial Relation Fe/GaAs

20ML

Au

Access to the Schottky Barrier Region

Systematic Depth Dependence (Unbiased Junction)

T = 150 K

Resonance Spectrum in Fe

Towards Spin Injection

Avoiding the Schottky Barrier with Dilute Magnetic Semiconductors: GaAs:Mn

Dilute Magnetic Semiconductors

Mn doped GaAs

Mn acceptor (STM) Yakunin et al. PRL **92**, 216806 (04)

Substitutional (Ga): Acceptor Interstitial: Double Donor

 $Ga_{1-x}Mn_xAs$ is not stable in bulk

180 nm Ga_{0.95}Mn_{0.05}As / GaAs

Depth Dependence at 50 K (< T_C) Q. Song et al., Physica B (2009)

broad, negatively shifted line, fast spin relaxation from the Mn doped layer

Temperature Dependence

Temperature Dependence

SQUID Magnetization in 1.3 T

Contributions to the Local Field

$B = B_0 + B_{demag} + B_{Lor} + B_{loc}$ $= B_0 - 4\pi M + (4\pi/3)M + B_{loc}$

Clogston Jaccarino Analysis

Time Reversal Symmetry Breaking Superconductivity?

H. Saadaoui

Surface Effects in a d-wave SC

Search for broken time reversal symmetry near the surface of <110> YBa₂Cu₃O₇ (Urbana Tc=86.7K) (Hassan Saadaoui)

Beam energy 2 keV

β-NMR resonance linewidth in Ag (15nm)/YBa2Cu3O7 Versus T; E=2 keV B=10G; (Hassan Saadaoui)

β-NMR resonance linewidth versus magnetic field in Ag (15nm) on YBa2Cu3O7 E=2 keV; (Hassan Saadaoui)

zero-field cooled

Josephson vortices in Bi2Sr2CaCu2O8 H//=35G 81K (Grigorenko et al., Nature **414**, 728 2001)

Spontaneous Field at Tc (Sr₂RuO₄)

G.M. Luke et al., Nature 394, 558 (1998)

⁸Li βNQR in Sr₂RuO₄

(Maeno, Kyoto)

Low T (300 mK) capability funded and in design

Competition

Low Energy Muon Facility at PSI

low energy via moderation, reacceleration

http://lmu.web.psi.ch/

Collaboration

R.F. Kiefl (UBC, Phys), **K.H. Chow** (Alberta, Phys) S.R. Dunsiger (TU Munich), Z. Yamani (NRC-CINS, Chalk River), E. Morenzoni, Z. Salman (PSI)

<u>Students:</u> T. Parolin, H. Saadaoui, M.D. Hossain, Q. Song, A. Mansour, D. Wang, M. Smadella, T. Keeler, I . Fan, and many undergrads

<u>TRIUMF:</u> G.D. Morris, C.D.P. Levy, M.R. Pearson, A. Hatakeyama (Tokyo), S. Daviel, R. Poutissou, D. Arseneau, R. Baartman, M. Olivo, S.R. Kreitzman

SAMPLES: L.H. Greene (Urbana), T. Hibma, S. Hak (Groningen), B. Heinrich (SFU), Y. Maeno (Kyoto), P. Fournier (Sherbrooke), J.Y.T. Wei (Toronto), J.W. Brill (Kentucky), J. Chakhalian (MPI-Stuttgart, Arkansas), G. Condorelli, R. Sessoli (Florence), C. Ferdeghini (Genoa), J.K. Furdyna (Notre Dame), K.M. Yu (LBL), N.J.C. Ingle (UBC), R. Liang, D.A. Bonn, W.N. Hardy (UBC), E. Katz (Beer Sheva), F. Fujara (TU Darmstadt), R. Neumann (GSI), T. Tiedje (UBC, UVic) more info: bnmr.triumf.ca

End

The **12th International Conference on Muon Spin Rotation**, **Relaxation, and Resonance** will be held in Cancun, Mexico,

May 16-20, 2011.

All sessions and accommodations will be at the **Fiesta Americana Condesa**, which is an all-inclusive resort located on one of the most beautiful beaches in Cancun with a magnificent view of the Caribbean Ocean and the Nichupte Lagoon.

Further information is available on the conference web site: http://muSR2011.triumf.ca.

Facility for Rare Isotope Beams, **FRIB**

ARIEL Project Funded: \$63M

ARIEL is a new underground beam tunnel surrounding a next-generation linear accelerator – an e-linac, led by the University of Victoria. The project will allow TRIUMF to develop technology to advance Canada's supply of critical medical isotopes, capitalize on existing investments, and broaden its research capabilities in particle physics, nuclear physics, nuclear medicine, and materials science.

Summer School on muon spin rotation and beta NMR, TRIUMF, Vancouver, July 2011

http://www.triumf.info/hosted/TSI/

Xtras

Transport Measurements of Spin Injection from Fe to GaAs

G. Salis et al., IBM Zurich, PRB 80, 115332 (2009)

Fundamental Interactions

Zeeman:
$$h v_{\text{Larmor}} = \mathbf{\mu} \cdot \mathbf{B}$$

Quadrupolar: $V_{ij} = \frac{\partial^2 V}{\partial x_i \partial x_j}$ EFG dipole
moment
 $v_Q = a \times eQ \times V_{zz}$ quadrupole moment
 $H_Q = \frac{v_Q}{2} \left[I_z^2 - I(I+1) \right]$

Ga_{1-x}Mn_xAs ⁸Li⁺ Implantation

Temperature dependence of T_1

