Development and Applications of "Mössbauer Cameras"

Y. Yoshida Shizuoka Institute of Science and Technology, Japan

- 1. Introduction
- 2. "Mössbauer Camera" : imaging by PIAS+FOS
- 3. "Mössbauer Camera" : mapping by MCX
- 4. Applications for Fe impurity in Si-solar cells
- 5. A running project to achieve submicron resolution*
 6. Summary

* Supported by JST

Mössbauer Group at SIST

Kazuo Hayakawa¹, Kenichi Yukihira¹, Masahiro Ichino¹, Yuki Akiyama¹, Hiroto Kumabe¹, Hiroyoshi Soejima²

¹ Shizuoka Institute of Science and Technology, ²Shimadzu Corporation

"Mössbauer camera" to study microstructures in materials

CCD camera

Mössbauer camera

1mm

80×80 pixels

Readout time is too slow in 800×800 pi X-ray camera (30ms)

Imaging by PIAS + FOS

"Mössbauer Camera" using a mapping Technique Main program with LabVIEW

Mössbauer camera: mapping by focusing 14.4keV y-ray

SIST Yoshida, K. Hayakawa, K. Yukihira, K. Suzuki, K. Sakata, T. Kamimura Shimazu H. Socjima

14.4keV γ -ray emitted from a ⁵⁷Co-in-Rh source (50mCi) are focused on a sample by **MCX lens (Soejima-Kumakov lens)**

A measurement position is varied with a step size between $250\mu m$ and $25\mu m$

Three stage MCP with a center hole and a grid Hamamatsu Photonics K.K.

Space resolution : 50~ 100μ m The images are distorted at boundaries!

Instrumental set-up

 $Vac \sim 10^{-5} Pa$

Mössbauer Camera using a mapping Technique

How to select an observation area by FE-SEM?

Mössbauer Camera How to proceed the microscope operation corresponding three different input?

⁵⁷Fe Mössbauer Effect

Image Simulations for 100nm⁵⁷Fe+50/100nm-Ag in the case of conversion and Auger electrons mapping

emission (Counts=10±3)

emission (Counts=1±1)

Image Simulations for 100nm⁵⁷Fe+50/100nm-Ag in the case of transmitted 14.4keV-γ-rays mapping

transmission (Counts=50000±224)

transmission (Counts=10000±100)

PHA spectra from MCP Which depend on the energy of electrons ?

Simultaneous measurements of mapping images

A mapping image of electrons and FE-SEM picture

2mm

PHA spectrum of MCP corresponding to the measuring points

Mapping picture of SUS304

(b)

Observed image of ⁵⁷Fe + Ag deposited FZ-Si 3D mapping may be possible!

Application for Fe contamination in mc-Si solar cell

--- . - . .

Low efficiency due to defects

Mc-Si wafer contains a region with low minority carrier life time

Mössbauer spectra of ⁵⁷Fe doped FZ-Si, mc-Si

Y. Yoshida, S. Horie, K. Niira, K. Fukui and K. Shirasawa, Physica B, 376-377 (2006) 227.

Atomistic information on ⁵⁷Fe through Hyperfine interactions between ⁵⁷Fe nucleus and electrons

Fe impurities in mc-Si solar cells

⁵⁷Mn/⁵⁷Fe in Si

FINAL LATTICE SITES AND CHARGE STATES OF ⁵⁷Mn /⁵⁷Fe GeV- IMPLANTATION INTO Si

<u>Y. Yoshida</u>¹, Y. Kobayashi², K. Yukihira¹, K. Hayakawa¹, K. Suzuki¹, A. Yoshida², <u>H. Ueno² A. Yoshi</u>mi², K. Shimada², D. Nagae², K. Asahi³ and G. Langouche⁴.

¹ Shizuoka Institute of Science and Technology, Shizuoka, Japan ,² RIKEN, Japan,
 ³ Tokyo Institute of Technology, Japan, ⁴ Katholieke Universiteit Leuven, Belgium

Iron in silicon: Interactions with radiation defects, carbon, and oxygen

S. K. Estreicher,* M. Sanati, and N. Gonzalez Szwacki PHYSICAL-REVIEW B 77, 125214 2008

Observed images of 1.5 nm-⁵⁷Fe deposited mc-Si (intentionally contaminated with ⁵⁷Fe)

 $-3 \leq V_D \leq 3 \text{ mms}^{-1}$

Clearly shown is that ⁵⁷Fe distribute differently in different crystal grains

Different resonance conditions provide different images

Comparison with the results from minority carrier life-time & FTIR

Observed images of mc-Si as received without intentional ⁵⁷Fe contamination

pn-junction Si as received

Velocity / mms⁻¹

A running project to achieve submicron spot size

Fresnel Zone Plate : ϕ 250µm,Ta thickness=2.5µm, width of most outer zone= 250nm, membren : SiN 2.0µm

FZP (ATN/FZP-200/206) focal distance = 483mm

PHA spectrum of MCX+FZP at focal point

The spot size reaches down to 3 μ m.

E----

Beam focus by FZP and other elements

- <u>Imaging</u> by PIAS+FOS
 » Monochrometer for 14.4keV γ-rays
- 2. <u>Mapping</u> by MCX: spatial resolution of 50 μm » distortion of image
- 3. Applications for Fe impurity in Si-solar cells
 » mapping under light illumination
- 4. <u>Mapping</u> by MCX + FZP: spatial resolution of 3 μ m » vibration of the set-up

ICAME2011 in Tokyo supported by YAMADA Science foundation to create the next generation of ICAME

25-30 September 2011

Center for National University Finance and Management, Tokyo, JAPAN

> od Screens - (O 「雷神風神図