

Synchrotron Radiation based TDPAC

I. Sergueev European Synchrotron Radiation Facility Grenoble, France

HFI / NQI 2010, 12-17 September 2010 CERN

- SR TDPAC: comparison with conventional TDPAC
- •SR TDPAC: comparison with MS and NRS
- Examples of application:
 - Site-specific phonon dynamics
 - Relaxation in glasses
 - Study of QI in $\beta\text{-tin}$
- Conclusion

Nuclear Resonance Scattering

A light for Science

Mössbauer γ rays. Here we discuss certain new timedifferential-perturbed-angular-correlation- (TDPAC) type experiments⁵ which could be performed using pulsed synchrotron sources leading to interesting new results.

A.Q.Baron et al, Europhys. Lett., **34**, 331(1996)

I.Sergueev et al, Phys. Rev. B **73**, 024203 (2006) I.Sergueev et al. Phys. Rev. B **78**, 214436 (2008)

TDPAC vs SR TDPAC

γ_{1} γ_{2} SRPAC

counter

stop

start

Advantages of SR TDPAC:

- no chemical or electronic aftereffects
- only one nuclear transition
- in general, large contrast of the beats

Formal description of SR TDPAC for M1

A light for Science

Isotope	transition	2A ₂₂
⁵⁷ Fe, ¹¹⁹ Sn	1/2→3/2→1/2	0.5
⁶¹ Ni, ¹⁵⁵ Gd	3/2→5/2→3/2	0.28
¹²¹ Sb, ¹⁵¹ Eu	5/2→7/2→5/2	0.22
⁹⁹ Ru	5/2→3/2→5/2	0.02

SR TDPAC on ⁵⁷Fe

A light for Science

Sample: ferrocene enriched by ⁵⁷Fe with quadrupole splitting

$$I(t) \propto e^{-t/\tau} \cdot \mathbf{H} 2A_{22} \cdot P_2(\cos\theta) \cdot G_{22}(t)$$

Sample: α-iron enriched by ⁵⁷Fe with magnetic splitting

$$I(t) \propto e^{-t/\tau} \cdot \operatorname{H} 2A_{22} \cdot R(t)$$
$$R(t) = \frac{1}{4} + \frac{3}{4} \cos 2\omega_B t$$

SR TDPAC for E2 transition

A Light for Science

Nuclear transition : $0^+ \rightarrow 2^+$, Cascade: $0 \rightarrow 2 \rightarrow 0$

SP

 \mathbf{k}_{in}

k_{ou⁺}

	τ	E
	ns	keV
¹⁵⁴ Sm	4.3	82.0
¹⁵⁸ Gd	3.7	79.5
¹⁶⁰ Gd	3.9	75.3
¹⁶⁴ Dy	3.4	73.4
¹⁶⁶ Er	2.7	80.6
¹⁶⁸ Er	2.7	79.8
¹⁷² Yb	2.6	78.7
¹⁷⁴ Yb	2.5	76.5
¹⁸⁰ Hf	2.2	93.3
¹⁸² W	1.9	100.1

$I(t) \propto e^{-t/\tau} \cdot \begin{cases} 1 \\ -t \end{cases}$	$\int 1 - 2A_{22} \cdot G_{22}(t) \cdot P_2(\cos\theta) - $	
	$\left[-\frac{1}{4}A_{44}G_{44}(t) \cdot (P_4(\cos\theta) - \frac{1}{24}P_4^{(4)}(\cos\theta)\cos 4\phi) \right]$	-

D. H. Ryan and J.M.Cadogan, Hyp. Int. 153 (2004) 43

Experimental setup

Detector with Si APDs

Dynamical range: ~10⁶ ph/s Time resolution: ~0.1-2 ns

SR TDPAC vs NFS

Differences:

- dependence on the spatial evolution of nuclei
- dependence on the ground nuclear state spin evolution

Hyp. Int.: quadrupole splitting

A Light for Science

Coherent superposition of the wavelets

$$\mathbf{E} \propto \mathbf{e}^{i\Omega \dagger} + \mathbf{e}^{-i\Omega \dagger}$$

Ferrocene

Hyp. Int.: 2 single lines

Hyp. Int.: magnetic splitting

A Light for Science

Applications

- Site-specific phonon dynamics
- Relaxation in glasses
- Study of QI in β -tin

Phonon assisted SR TDPAC

Phonon assisted SR TDPAC

A light for Science

JOURNAL DE PHYSIQUE

Colloque C6, supplément au nº 12, Tome 37, Décembre 1976, page C6-745

MOLECULAR MOTIONS IN A VISCOUS ORGANIC LIQUID : FERROCENE IN COLD BUTYL PHTHALATE (*)

S. L. RUBY and B. J. ZABRANSKY Argonne National Laboratory, Argonne, Illinois 60439, U. S. A.

and

P. A. FLINN Carnegie Meilon University, Pittsburgh, Pennsylvania 15213, U. S. A.

Glass-former: Di-butyl phthalate, T_g = 178 K

T=179.7 κ ΔΓ=0.02 20 e in 0 Т=204.4`К ∆Г= 0.16 % ABSORPTION = 209.C K О. 0.2 =212.0 K 0.3 0.4 0.5 -3 VELOCIT (mm/s)

Task:

resolve rotational and translational degrees of motions

Relaxation process

k – jump rate, sec⁻¹ a – jump distance α – jump angle λ – wave length, 0.86 A R – radius of the molecule, 2 A

$$\Delta_T = \frac{2}{3}\pi^2 \cdot k \cdot \left(\frac{a}{\lambda}\right)^2$$

$$\alpha = \sqrt{\frac{2}{3}} \cdot \frac{a}{R}$$

$$\Delta_R = \frac{3}{2} \cdot k \cdot \alpha^2$$

$$\frac{\Delta_R}{\Delta_T} = \frac{3}{2\pi^2} \cdot \left(\frac{\lambda}{R}\right)^2 \to 0.03$$

A Light for Science

Conclusions:

The probe reproduces the dynamics of the glass former.

At low T dynamics of the probe follows slow β branch

At low T only molecular rotation is seen in both NFS and SR TDPAC.

Study of β -tin by SR TDPAC

A Light for Science

C. Strohm et al., in preparation

K.P.Mitrofanov et al., Sov. Phys. JETP 21 (1965) 524

J.C. Soares et al., Phys.Lett. 45A(1973)465

Measurements by SR TDPAC

Study of β -tin by SRPAC

Results of measurements

Conclusion:

•value of the life time of 23.9keV nuclear state of ¹¹⁹Sn was obtained with high precision

•quadrupole splitting of β -tin have been seen in the time spectrum and was measured for different temperatures

SR TDPAC – method which allows to extend study of hyperfine interactions by TDPAC on to Mössbauer isotopes

 method which allows to extend study of hyperfine interactions by MS into the range of zero Lamb-Mössbauer factor.

3 main directions of application:

Complementary to MS information about hyperfine splitting and dynamics

Hyperfine interactions in high energy Mössbauer isotopes

Study of hyperfine interactions and dynamics in soft condensed matter

Acknowledgment

- U. Van Bürck TU München, Germany
- G. Smirnov Kurchatov Institute, Moscow, Russia

Members of ESRF nuclear resonance group:

- R. Rüffer
- A. Chumakov
- T. Asthalter
- C. Strohm
- •T. H. Deschaux-Beaume