Phonon softening in (Eu,Ba)TiO₃

Seán Cadogan

Dept of Physics & Astronomy University of Manitoba Winnipeg, MB Canada

Co-authors

AO Sushkov, SK Lamoreaux & S.Eckel
 Yale U., USA

W Rowan-Weetaluktuk & DH Ryan
 McGill U., Canada

- O Sushkov
 - U. New South Wales, Australia

M. Yethiraj & AJ Studer

Australian Nuclear Science & Technology Organisation

Search for a permanent electric dipole moment of the electron

(Supersymmetric extensions to the Standard Model)

- Solid-state experiments
- Ferroelectric material $Eu_{0.5}Ba_{0.5}TiO_3$ (Perovskites)

Electric dipole moment

Standard Model says the electron is a point-particle

d = ???

Electric dipole moment

- Time-reversal violation if the EDM exists
- Magnetic dipole reversed but electric dipole is not !

T-violation implies
 CP-violation ("CPT theorem")

Blue arrow = magnetic moment Orange shading = electric dipole moment

EDM measurement

Reverse the E field and measure ΔM

Rushchanski et al, Nature Materials 9, 649 (2010)

Experimental Details

Ball-mill Eu₂O₃ + TiO₂ + BaTiO₃
 XRD, χ_{ac}, neutron diffraction, ¹⁵¹Eu Mössbauer
 Permittivity

Phonon softening --- Mössbauer

 Cochran, Anderson 1960: occurrence of instabilities in the phonon modes

 Muzikar et al. 1963: connection between Mössbauer f-factor and the T-dependent phonon mode responsible for the displacement Ferroelectricity

$$\langle x^2 \rangle \uparrow$$

 $f \propto \exp\left(c \langle x^2 \rangle \right)$

Phonon softening -- Mössbauer

PHYSICAL REVIEW

VOLUME 139, NUMBER 6A

13 SEPTEMBER 1965

Mössbauer Effect in Ferroelectric BaTiO₃[†]

V. G. BHIDE AND M. S. MULTANI Department of Physics, Institute of Science, Bombay, India (Received 22 March 1965)

PHYSICAL REVIEW B

VOLUME 2, NUMBER 7

Temperature-Dependent Optical Mode in Antiferroelectric PbZrO₃ by the Mössbauer Effect

A. P. Jain, S. N. Shringi, * and M. L. Sharma National Physical Laboratory, New Delhi, 12 India (Received 8 April 1970)

Mössbauer Effect for Fe⁵⁷ in Ferroelectric Lead Titanate

V. G. Bhide and M. S. Hegde National Physical Laboratory, New Delhi-12, India (Received 2 June 1971)

Materials for EDM search

What kind of material do you need ?

- Ferroelectric with a large electric polarization switchable at low-T (4 K) → TM with a d⁰ configuration
- FE enhances the effective E field on the magnetic electrons
- High concentration of ions with a local magnetic moment that remains paramagnetic at 4 K. → RE 4f localized electrons
- Local environment of each magnetic ion should be strongly modified by the Ferroelectricity

BaTiO₃

 Large RT electric polarization (25 μC/cm²)

 Ba²⁺ has an inert gas electron configuration so magnetic moment = 0

■ a = 3.996 Å at RT

EuTiO₃

Eu²⁺ magnetic 4f⁷

 Not ferroelectric but dielectric constant is large (400) at low-T so 'almost'

• $T_N = 5.3 \text{ K}$ G-type AF

Permittivity decreases
 below T_N but increases
 in an externally applied
 B field

■ a = 3.905 Å at RT

Ferroelectric transitions in BaTiO₃

BaTiO₃

- Cochran, Anderson 1960
- Phonon-softening
- Relative ionic displacement
- **Cohen 1992**
- Hybridization between Oxygen p-states and the empty Ti dstates
- Competition between covalent and ionic forces
- O^{2-} and Ti^{4+}

Cohen Nature 358 136 (1992)

Crystal Structure

Perovskite
Cubic (above 178 K) Pm3m
a ~ 4.0 Å

Ranjan et al JPCM 2009

- Ba dilution reduces T_N below 2 K.
- Predicted EDM sensitivity is 1.5 x 10⁻²⁸ e-cm after 10 d of averaging (a factor of 10 better than current limit)
- Present experimental upper limit is 1.6×10^{-27} e-cm

¹⁵¹Eu Mössbauer

Isotopic abundance 47.8(5)% Ground state properties: $\mu = 3.4717(6) \text{ nm}$ Q = 0.903(10) b

• Excited state properties: E = 21.541418(10) keV $E_R = 1.650411(8) 10^{-3} \text{ eV}$ $\alpha_{IC} = 28.6(1)$ $\sigma = 3.86(5) 10^{-20} \text{ cm}^2$ $\mu = 2.591(2) \text{ nm}$ Q = 1.28(2) b $T_{1/2} = 9.6(3) \text{ ns}$ W = 1.3(3) mm/s

Production: ${}^{150}Sm(n,\gamma){}^{151}Sm$ ${}^{151}Eu(p,n){}^{151}Gd$ ${}^{151}Eu(d,2n){}^{151}Gd$

¹⁵¹Eu Mössbauer spectra

90% 2+ 10% 3+ origin ?

Relative Mössbauer areas

Isomer shifts

Eu²⁺

Eu³⁺

$Eu_{0.5}Ba_{0.5}TiO_3$

- Why does Eu³⁺ show a much stronger effect than Eu²⁺?
- Eu^{3+} is about 15 % smaller than Eu^{2+}
- Why is Eu³⁺ present ? Stoichiometry issues ?

- Eu_{0.5}Ba_{0.5}TiO₃ shows a clear effect of the ferroelectric transition at 178 K by ¹⁵¹Eu Mössbauer spectroscopy
- Eu is mainly in the 2+ state but some 3+ is present
- Eu^{3+} shows a much stronger effect than Eu^{2+} .

