

The 3rd Joint Meeting of the 15th International Conference on Hyperfine Interactions and 19th International Symposium on Nuclear Quadrupole Interactions CERN, Geneva Switzerland 13-17 September 2010

Study of Dependence of Quasi-Particle Alignment on Proton and Neutron Numbers in A= 80 Mass Region through g-factor Measurements

Yuan Daqing

China Institute of Atomic Energy

OUTLINE

- Background
- Experimental details
- Results and Discussion
- Summary

Fan Ping Zuo Yi **Zhang Qiaoli** Li Guangsheng Xu Guoji **Zhang Xizhen** K. Matsuta* M. Mihara*

Zheng Yongnan Zhou Dongmei Wu xiaoguang Zhu Lihua **Fan Qiwen** T. Minamisono* M. Fukuda* Zhu Shengyun

Supported in part by National Science Foundation of China under Grant Nos. 10435010 and 10975189

* Osaka University, Japan

1, Background

g-factor

$$\mu = gI = \frac{1}{\mu_N} \int \Psi_{J,J}^* M_Z \Psi_{J,J} dt \quad g \to \Psi_{J,J}$$

physical quantity to characterize nuclear properties very sensitive to nuclear structure

g-factor measurements

provide direct and definite information

on nuclear structure

Nuclear structure at high spins in the mid-weight mass region of A= 80 possesses many interesting features

- e.g.
- **Shape co-existence**
- **Structural softness**
- Strong dependence on spin & particle numbers
- **Magnetic rotation**
- Quasi-particle alignment (QPA) in the g_{9/2} orbit

• **QPA(Quasi-particle alignment (QPA) in the g**_{9/2} **orbit)**

a significant feature

• The g-factor measurement of intra-band states can provide direct & unique information on QPA

g-factor of high-j (g9/2 orbit) protons
positive and large $g_{\pi} = 1.38$ g-factor of high-j (g9/2 orbit) neutrons
negative and small $g_{\nu} = -0.24$

- The present work
 - motivated to measure g-factors of high spin states of ground rotational bands
 - in the mass A= 80 region
 - in order to study the quasi-particle alignment
- Experiment performed at HI-13 tandem accelerator in CIAE

2, Experimental details

• Requirements

in measuring g-factor of high spin states

- TMF-IMPAD method
- Population of high spin states
- Data Analysis

Difficult to measure

g-factors of high spin states:

• Lifetimes of high spin states are very short usually in the range of sub-ps~ps

(Only a very small part of precession can be measured experimentally)

 Nuclear states of interest are populated by fusion evaporation reactions nuclear precession transfer from higher feeding states to lower states needs to be carefully considered (very complicated)

g-factor measurements of high spin states with short lifetimes requirements:

- •Very high magnetic field: ~10³ T (TMF)
- Knowledge of kinematics from the production of recoil nucleus to its leaving the magnetic foil
- Very precise measurement of precession angle $g = 0.31, B = 3.68 \times 10^3 \text{ T}, \text{ tr} = 0.25 \text{ ps}$ $\Delta \theta = \omega_{\text{L}} t = 1.63^{\circ}$
- Very high resolution γ ray detection due to complicated g ray spectra
- Delicate multi-layer target assembly

Туре	Magnetic	Minimum applicable
of magnets	strength /T	lifetime/sec
Electro-magnet	~2.5	~1.0x10 ⁻⁹
Super-conducting magnet	~9	~2.3x10 ⁻¹⁰
Static magnetic field (SMF)	~20	~1.0x10 ⁻¹⁰
Transient magnetic field (TMF)	~3500	~6.0x10 ⁻¹³

g = 0.3和 $\Delta \theta = 1.72^{\circ}$ used in calculation

T (Tesla) = 10^4 G (gauss)

TMF combined with the time integral perturbed angular distribution (PAD) method is a unique way to measure g-factors of high spin states with short lifetimes

TMF-IMPAD used to measure g-factors of intra-band states of ground rotational bands

which can precisely determine precession angle $\Delta \theta$ Then g-factor can be deduced through

- $g = (\Delta \theta) \hbar / B_{TMF} t \mu_N$
- (t precession time)

View of TMF-IMPAD set up at HI-13 tandem

Beam

Multi-layer target

- 3-layer target used
- 0.4 mg cm⁻² target foil enriched to 99.8%
- Ferro-magnetic Fe foil
 1.575 mg cm⁻²
- Cu stopper
 12 mg cm⁻²
- Ta beam catcher
 800 mg cm⁻²

Population of high spin states by fusion evaporation reactions

- Large nuclear reaction cross section
- Many nuclides simultaneously produced
- Populating all high spin states of interest
- High velocity of recoil nuclides
- Large angular momentum transfer
 & high degree of nuclear alignment important for TMF-IMPAD measurement

The high spin states of the ground rotational band in ⁸²Sr, ⁸³Y, ⁸⁴Zr, ⁸⁵Nb, ⁸⁵Zr and ⁸⁶Zr were populated by the fusion-evaporation reactions with the heavy ion beams from the HI-13 tandem accelerator at CIAE

projectile energies and reaction cross sections calculated by a Cascade program and a PACE4 program

- ${}^{58}Ni({}^{32}S,4p){}^{86}Zr$ $E_S = 110 \text{ MeV} \sigma \sim 125 \text{ mb}$
- ${}^{58}Ni({}^{28}Si,2p){}^{84}Zr$ $E_{Si} = 98 \text{ MeV}$ $\sigma \sim 40 \text{ mb}$
- ${}^{60}\text{Ni}({}^{28}\text{Si},2\text{pn}){}^{85}\text{Zr} \quad \text{E}_{\text{Si}} = 98\text{MeV} \quad \sigma \sim 160 \text{ mb}$
- ${}^{58}Ni({}^{28}Si,p2n){}^{85}Nb E_{Si}=110MeV \sigma \sim 50 mb$
- ${}^{58}Ni({}^{28}Si,4p){}^{82}Sr$ $E_{Si}=110MeV$ $\sigma\sim103 mb$
- ${}^{58}Ni({}^{28}Si,3p){}^{83}Y$ $E_{Si}=98$ MeV $\sigma \sim 230$ mb

Data Analysis

Double ratio constructed from the field up & down counts to infer the nuclear precession of a state

 ρ_{12} and ρ_{34} single ratios formed with the counts N[†]and N[↓] of ± θ detector pair and ±(180°- θ) detector pair for an interested transition

The average precession angle $\Delta \theta$ deduced from

$$\Delta \theta = \varepsilon / S(\theta)$$
 $\varepsilon = \frac{\rho - 1}{\rho + 1}$ $S(\theta) = \frac{1}{W(\theta)} \frac{dW(\theta)}{d\theta}$

g-factor obtained from the precession $\Delta \theta$ and transient field $\mathbf{B}_{\mathrm{TMF}}$

$$g = \frac{-\Delta\theta \hbar}{\mu_N \int_n^{out} B_{TMF}(t) e^{-t/\tau} dt} \qquad B_{TMF}(\nu) = 96.7(\nu/\nu_0)^{0.45} Z^{1.1} \mu_B N_p$$

 μ_N the nuclear magneton, τ the mean lifetime of nuclear stat, $S(\theta)$ logarithmic slope of γ ray angular distribution, the integration runs over the recoiling ion entry to exit times of the
ferromagnetic Fe layer. The parameterization of transient magnetic field $B_{TMF}(t)$ given by
Shu et al (Phys.Rev., C21 (1980) 1828)

the Bohr velocity, the velocity of the recoiling nuclei that depends on time.

 $B_{\rm TMF}$ interpreted as electron polarization transfer from Fe to the s orbit electron of passing ion

B_{TMF} Fe:Co:Ni:Gd = 1.0:0.8:0.3:1.2, Gd needs low temperature.

Precession transfer correction

- The precession of a lower state also reflects the precessions of the higher spin states in a cascade transition and the side feeding states
- The measured precession of an interested state is an algebraic sum of the precession of itself and the precessions of all states that feed it

$$\Delta \theta_m = \Sigma \Delta \theta_{cas}^h + \Sigma \Delta \theta^s + \Delta \theta_{self}$$

$$\Sigma \Delta \theta^s = \Sigma \Delta \theta_{cas}^h + \Sigma \Delta \theta^s + \Delta \theta_{self}$$

• To get the net precession of a certain state a computer program was used to follow the time evolution of the recoiling nucleus from its production in the target to its exit from the Fe foil

3, Results and discussion

• Quasi-particle alignment (QPA)

Dependence of QPA on spin Dependence of QPA on proton number Dependence of QPA on neutron number

⁸⁴Zr

中国原子能科 CHINA INSTITUTE OF

g_{9/2} proton alignment first then followed by g_{9/2} neutron alignment

g_{9/2} proton alignment first then followed by g_{9/2} neutron alignment

⁸⁶Zr

FIG. 1. ⁸⁶Zr energy levels observed in the $^{12}C(^{77}Se_3n)^{86}Zr$ reaction at 260 MeV. Transition energies are in keV. The transitions indicated by dotted lines were either doublets, contaminations or very weakly observed.

g_{9/2} neutron alignment first then followed by g_{9/2} proton alignment

g_{9/2} proton alignment first then followed by g_{9/2} neutron alignment

g_{9/2} proton alignment only

⁸⁵Nb

g_{9/2} neutron alignment first then followed by g_{9/2} proton alignment

Rotor Plus three particle model

g-factor calculation

 Empirical formula based on Cranking shell model

$$g(\omega) = g_g + (g_{jp} - g_g) \frac{i_p(\omega)}{I_x(\omega)} + (g_{jn} - g_g) \frac{i_n(\omega)}{I_x(\omega)}$$

 $i_p(\omega)$: proton aligned angular momentum $i_n(\omega)$: neutron aligned angular momentum $I_x(\omega)$: total aligned angular momentum g_{jp} : g-factors for the aligned protons g_{jn} : g-factors for the aligned neutrons g_g : g-factor close to $g_R(\sim Z/A)$ for the collective rotation

Calculated and measured g-factors for ⁸⁴Zr

Due to soft to hard structure transition the calculated g-factors near the peak are lower

Calculated and measured g-factors for ⁸³Y

A rotor plus two-particle model (PRM) for ⁸²Sr ⁸⁰kr even-even core as a rotor

two valence protons outside the core as two particles

Dependence of QPA on neutron number Z=40: ⁸⁴Zr, ⁸⁵Zr, ⁸⁶Zr

N=44 Proton alignment followed by neutron alignment N=45 Proton

Proton alignment followed by neutron alignment N=46 neutron alignment followed by proton alignment

Dependence of QPA on proton number
 N=44 ⁸²Sr(38), ⁸³Y(39), ⁸⁴Zr(40), ⁸⁵Nb(41)

Z=38 Proton alignment only

Z=39 Proton alignment followed by neutron alignment

- Z=40 Proton alignment followed by neutron alignment
- Z=41 Neutron alignment followed by proton alignment

Summary of the results

Quasi-particle alignments to large extent depend on

proton number neutron number

Spin

Quasi-particle alignments lead to different patterns of variation of g factor with spin

4, Summary

- The g-factor is a good probe to study QPA
- The QPA was well investigated for ⁸²Sr, ⁸³Y, ⁸⁴Zr, ⁸⁵Nb, ⁸⁵Zr and ⁸⁶Zr through g-factor measurements
- The quasi-particle alignments lead to different patterns of variation of g factor with spin
- The alignments depend on the quasi-particle number
 ① For the nuclides with Z=40 the proton alignment is followed by the neutron alignment in ⁸⁴Zr and ⁸⁵Zr, while the neutron alignment is followed by the proton alignment in ⁸⁶Zr

②For the nuclides with N=44 the proton aligns only in ⁸²Sr, the proton aligns first and then the neutron starts to align at higher spins in ⁸³Y and ⁸⁴Zr and the neutron alignment is followed by the proton alignment in ⁸⁵Nb

Thank You !

