The 3 rd Joint Meeting of the $15^{\text {th }}$ International Conference

 on Hyperfine Interactions and 19 ${ }^{\text {th }}$ International Symposium on Nuclear Quadrupole Interactions CERN，Geneva Switzerland 13－17 September 2010
Study of Dependence of Quasi－Particle Alignment on Proton and Neutron Numbers in $A=80$ Mass

Region through g－factor Measurements

Yuan Daqing
China Institute of Atomic Energy

OUTLINE

－Background
－Experimental details
－Results and Discussion
－Summary

Fan Ping
Zuo Yi Zhang Qiaoli Li Guangsheng Xu Guoji Zhang Xizhen K．Matsuta＊ M．Mihara＊

Zheng Yongnan Zhou Dongmei Wu xiaoguang Zhu Lihua
Fan Qiwen T．Minamisono＊ M．Fukuda＊ Zhu Shengyun

Supported in part by National Science Foundation of China under Grant Nos． 10435010 and 10975189

Osaka University，Japan

1，Background

g－factor

$$
\mu=g I=\frac{1}{\mu_{N}} \int \Psi_{J, J}^{*} M_{Z} \Psi_{J, J} d t \quad g \longrightarrow \Psi_{J, J}
$$

physical quantity to characterize nuclear properties very sensitive to nuclear structure
g－factor measurements provide direct and definite information
on nuclear structure

Nuclear structure at high spins in the mid－weight mass region of $\mathrm{A}=80$ possesses many interesting features
e.g.

Shape co－existence
Structural softness
Strong dependence on spin \＆particle numbers Magnetic rotation
Quasi－particle alignment（QPA）in the $\mathrm{g}_{9 / 2}$ orbit
－QPA（Quasi－particle alignment（QPA）in the $\mathrm{g}_{9 / 2}$ orbit） a significant feature
－The g－factor measurement of intra－band states can provide direct \＆unique information on QPA
g－factor of high－j（g9／2 orbit ）protons
positive and large $\quad g_{\pi}=1.38$
g－factor of high－j（g9／2 orbit ）neutrons negative and small $\quad g_{v}=-0.24$
－The present work motivated to measure g－factors of high spin states of ground rotational bands in the mass $\mathrm{A}=\mathbf{8 0}$ region in order to study the quasi－particle alignment
－Experiment performed at $\mathrm{HI}-13$ tandem accelerator in CIAE

2，Experimental details

－Requirements
in measuring g－factor of high spin states
－TMF－IMPAD method
－Population of high spin states
－Data Analysis

Difficult to measure g－factors of high spin states：

－Lifetimes of high spin states are very short
 usually in the range of sub－ps \sim ps
（Only a very small part of precession can be measured experimentally）
－Nuclear states of interest are populated by fusion evaporation reactions nuclear precession transfer from higher feeding states to lower states needs to be carefully considered （very complicated）
g－factor measurements of high spin states with short lifetimes requirements：
－Very high magnetic field：$\sim 10^{3} \mathrm{~T}$（TMF）
－Knowledge of kinematics from the production of recoil nucleus to its leaving the magnetic foil
－Very precise measurement of precession angle

$$
\begin{aligned}
& g=0.31, B=3.68 \times 10^{3} \mathrm{~T}, \operatorname{tr}=0.25 \mathrm{ps} \\
& \Delta \theta=\omega_{\mathrm{L}} \mathrm{t}=1.63^{\circ}
\end{aligned}
$$

－Very high resolution γ ray detection due to complicated g ray spectra
－Delicate multi－layer target assembly

Magnetic fields avialable

Type of magnets	Magnetic strength／T	Minimum applicable lifetime／sec
Electro－magnet	~ 2.5	$\sim 1.0 \times 10^{-9}$
Super－conducting magnet	~ 9	$\sim 2.3 \times 10^{-10}$
Static magnetic field（ SMF ）	~ 20	$\sim 1.0 \times 10^{-10}$
Transient magnetic field （ TMF ）	~ 3500	$\sim 6.0 \times 10^{-13}$

$$
g=0.3 \text { 和 } \Delta \theta=1.72^{\circ} \text { used in calculation }
$$

$$
\mathrm{T}(\text { Tesla })=10^{4} \mathrm{G} \text { (gauss) }
$$

SMF

Thick magnetic foil （Fe，Co，Ni，Gd）

TMF

 （Fe，Co，Ni，Gd）

TMF combined with the time integral perturbed angular distribution（PAD）method is a unique way to measure g－factors of high spin states with short lifetimes

TMF－IMPAD used

to measure g－factors
 of intra－band states of

ground rotational bands

which can precisely determine precession angle $\Delta \theta$
Then g－factor can be deduced through
$\mathbf{g}=(\Delta \theta) \hbar / \mathbf{B}_{\text {TMF }} \mathbf{t} \mu_{\mathrm{N}}$
（ t precession time）

View of TMF－IMPAD set up at HI－13 tandem

Beam

Multi－layer target

－3－layer target used
－ $0.4 \mathbf{~ m g ~ c m}^{-2}$ target foil enriched to $\mathbf{9 9 . 8 \%}$ ，
－Ferro－magnetic Fe foil $1.575 \mathrm{mg} \mathrm{cm}^{-2}$
－Cu stopper $12 \mathrm{mg} \mathrm{cm}^{-2}$
－Ta beam catcher $800 \mathrm{mg} \mathrm{cm}^{-2}$

T－shaped bronze chamber

Population of high spin states by fusion evaporation reactions

－Large nuclear reaction cross section
－Many nuclides simultaneously produced
－Populating all high spin states of interest
－High velocity of recoil nuclides

－Large angular momentum transfer \＆high degree of nuclear alignment important for TMF－IMPAD measurement

The high spin states
of the ground rotational band in ${ }^{82} \mathrm{Sr},{ }^{83} \mathrm{Y},{ }^{84} \mathrm{Zr},{ }^{85} \mathrm{Nb},{ }^{85} \mathrm{Zr}$ and ${ }^{86} \mathrm{Zr}$ were populated by the fusion－evaporation reactions with the heavy ion beams
from the HI－13 tandem accelerator at CIAE
－${ }^{58} \mathrm{Ni}\left({ }^{28} \mathrm{Si}, 3 \mathrm{Pp}\right){ }^{83} \mathrm{Y} \quad \mathrm{E}_{\mathrm{Si}}=98 \mathrm{MeV} \quad \sigma \sim 230 \mathrm{mb}$
－${ }^{58} \mathrm{Ni}\left({ }^{28} \mathrm{Si}, 4 \mathrm{p}\right){ }^{82} \mathrm{Sr} \quad \mathrm{E}_{\mathrm{Si}}=110 \mathrm{MeV} \quad \sigma \sim 103 \mathrm{mb}$
－${ }^{58} \mathrm{Ni}\left({ }^{28} \mathrm{Si}, \mathrm{p} 2 \mathrm{n}\right){ }^{85} \mathrm{Nb} \quad \mathrm{E}_{\mathrm{Si}}=110 \mathrm{MeV} \quad \sigma \sim 50 \mathrm{mb}$
－${ }^{60} \mathrm{Ni}\left({ }^{28} \mathrm{Si}, 2 \mathrm{pn}\right){ }^{85} \mathrm{Zr} \quad \mathrm{E}_{\mathrm{Si}}=98 \mathrm{MeV} \quad \sigma \sim 160 \mathrm{mb}$
－$\left.{ }^{58} \mathrm{Ni}\left({ }^{28} \mathrm{Si}, 2 \mathrm{p}\right)\right)^{84} \mathrm{Zr} \quad \mathrm{E}_{\mathrm{Si}}=98 \mathrm{MeV} \quad \sigma \sim 40 \mathrm{mb}$
－${ }^{58} \mathrm{Ni}\left({ }^{32} \mathrm{~S}, 4 \mathrm{p}\right){ }^{\mathbf{8 6}} \mathrm{Zr} \quad \mathrm{E}_{\mathrm{S}}=110 \mathrm{MeV} \quad \sigma \sim 125 \mathrm{mb}$
projectile energies and reaction cross sections calculated by a Cascade program and a PACE4 program

Data Analysis

Double ratio constructed from the field up \＆down counts to infer the nuclear precession of a state

$$
\begin{aligned}
& \rho=\frac{\rho_{12}}{\rho_{34}} \\
& \rho_{12}=\frac{N_{1}^{\uparrow}}{N_{1}^{\uparrow}} \frac{N_{2}^{\downarrow}}{N_{2}^{\uparrow}}
\end{aligned}
$$

ρ_{12} and ρ_{34} single ratios formed with the counts \mathbf{N}^{\dagger} and \mathbf{N}^{\downarrow} of $\pm \theta$ detector pair and $\pm\left(180^{\circ}-\theta\right)$ detector pair for an interested transition

The average precession angle $\Delta \theta$ deduced from

$$
\Delta \theta=\varepsilon / S(\theta) \quad \varepsilon=\frac{\rho-1}{\rho+1} \quad S(\theta)=\frac{1}{W(\theta)} \frac{d W(\theta)}{d \theta}
$$

g－factor obtained from the precession $\Delta \theta$ and transient field $\mathbf{B}_{\text {TMF }}$

$$
g=\frac{-\Delta \theta \hbar}{\mu_{N} \int_{n}^{u t} B_{\text {TMF }}(t) e^{-t / \tau} d t}
$$

$$
B_{T M F}(v)=96.7\left(v / v_{0}\right)^{0.45} Z^{1.1} \mu_{B} N_{p}
$$

μ_{N} the nuclear magneton，τ the mean lifetime of nuclear stat，$S(\theta)$ logarithmic slope of γ－ ray angular distribution，the integration runs over the recoiling ion entry to exit times of the ferromagnetic Fe layer．The parameterization of transient magnetic field $B_{\text {TMF }}(t)$ given by Shu et al（Phys．Rev．，C21（1980）1828）
the Bohr velocity，the velocity of the recoiling nuclei that depends on time．
$\mathbf{B}_{\text {TMF }}$ interpreted as electron polarization transfer from Fe to the s orbit electron of passing ion
B $_{\text {TMF }} \mathrm{Fe}: \mathrm{Co}: \mathrm{Ni}: G d=1.0: 0.8: 0.3: 1.2$ ，Gd needs low temperature．

Precession transfer correction

－The precession of a lower state also reflects the precessions of the higher spin states in a cascade transition and the side feeding states
－The measured precession of an interested state is an algebraic sum of the precession of itself and the precessions of all states that feed it

$$
\Delta \theta_{m}=\Sigma \Delta \theta_{\text {cas }}^{h}+\Sigma \Delta \theta^{s}+\Delta \theta_{\text {self }} \quad \Sigma \Delta \theta^{s} \quad \frac{\square}{\Sigma}{ }^{\Sigma \Delta \theta_{\text {css }}^{h}}
$$

－To get the net precession of a certain state a computer program was used to follow the time evolution of the recoiling nucleus from its production in the target to its exit from the Fe foil

3，Results and discussion

－Quasi－particle alignment（QPA）

Dependence of QPA on spin Dependence of QPA on proton number Dependence of QPA on neutron number

Dependence of quasi particle alignment on spin

$\mathbf{g}_{9 / 2}$ proton alignment first
then followed by $g_{9 / 2}$ neutron alignment

${ }^{85}$ Zr

$\mathrm{g}_{9 / 2}$ proton alignment first

then followed by $\mathrm{g}_{9 / 2}$ neutron alignment

${ }^{867 r}$

FIG．1．${ }^{86} \mathrm{Zr}$ energy levels observed in the ${ }^{12} \mathrm{C}\left({ }^{77} \mathrm{Se}, 3 n\right)^{86} \mathrm{Zr}$ reaction at 260 MeV ．Transition energies are in keV ．The tran－ sitions indicated by dotted lines were either doublets，contam－ inations or very weakly observed．

$\mathrm{g}_{9 / 2}$ neutron alignment first then followed by $g_{9 / 2}$ proton alignment

83Y

$\mathbf{g}_{9 / 2}$ proton alignment first

then followed by $g_{9 / 2}$ neutron alignment

${ }^{82} \mathbf{S r}$

$\mathrm{g}_{9 / 2}$ proton alignment only

${ }^{\mathbf{8 5}} \mathbf{N b}$

$\mathrm{g}_{9 / 2}$ neutron alignment first

then followed by $g_{9 / 2}$ proton alignment

Rotor Plus three particle model

g－factor calculation

－Empirical formula
based on Cranking shell model

$$
g(\omega)=g_{g}+\left(g_{j p}-g_{g}\right) \frac{i_{p}(\omega)}{I_{x}(\omega)}+\left(g_{j n}-g_{g}\right) \frac{i_{n}(\omega)}{I_{x}(\omega)}
$$

$i_{p}(\omega)$ ：proton aligned angular momentum
$i_{n}(\omega)$ ：neutron aligned angular momentum
$I_{x}(\omega)$ ：total aligned angular momentum
$g_{j p}: \quad g$－factors for the aligned protons
$g_{j n}: \quad g$－factors for the aligned neutrons
$g_{g}: \quad g$－factor close to $g_{R}(\sim Z / A)$ for the collective rotation

Calculated and measured g－factors for ${ }^{84} \mathbf{Z r}$

Due to soft to hard structure transition the calculated g－factors near the peak are lower

Calculated and measured g－factors for ${ }^{83} \mathbf{Y}$

A rotor plus two－particle model（PRM）for ${ }^{82} \mathrm{Sr}$

 ${ }^{80} \mathrm{kr}$ even－even core as a rotor two valence protons outside the core as two particles

－Dependence of QPA on neutron number $\mathrm{Z}=40:{ }^{84} \mathbf{Z r}, ~{ }^{85} \mathbf{Z r}, ~{ }^{86} \mathbf{Z r}$

$\mathrm{N}=44$
Proton alignment followed by neutron alignment

$\mathrm{N}=45$
Proton alignment followed by neutron alignment
$\mathrm{N}=46$
neutron alignment followed by proton alignment
－Dependence of QPA on proton number $\mathrm{N}=44{ }^{82} \mathrm{Sr}(38), ~{ }^{83} \mathrm{Y}(39), ~{ }^{84} \mathrm{Zr}(40), ~{ }^{85} \mathrm{Nb}(41)$

$\mathrm{Z}=38$
Proton
alignment only
$\mathrm{Z}=39$
Proton alignment followed by neutron alignment
$\mathrm{Z}=40$
Proton alignment followed by neutron alignment
$\mathrm{Z}=41$
Neutron alignment followed by proton alignment

Summary of the results

Quasi－particle alignments to large extent depend on

Spin
proton number
\section*{neutron number}

Quasi－particle alignments lead to different patterns of variation of \mathbf{g} factor with spin

4，Summary

－The g－factor is a good probe to study QPA
－The QPA was well investigated for ${ }^{82} \mathrm{Sr},{ }^{83} \mathrm{Y},{ }^{84} \mathrm{Zr},{ }^{85} \mathrm{Nb}$ ， ${ }^{85} \mathrm{Zr}$ and ${ }^{86} \mathrm{Zr}$ through g－factor measurements
－The quasi－particle alignments lead to different patterns of variation of g factor with spin
－The alignments depend on the quasi－particle number
（1）For the nuclides with $\mathrm{Z}=40$ the proton alignment is followed by the neutron alignment in ${ }^{84} \mathrm{Zr}$ and ${ }^{85} \mathrm{Zr}$ ，while the neutron alignment is followed by the proton alignment in ${ }^{86} \mathrm{Zr}$
（2）For the nuclides with $\mathrm{N}=44$ the proton aligns only in ${ }^{82} \mathrm{Sr}$ ， the proton aligns first and then the neutron starts to align at higher spins in ${ }^{83} \mathrm{Y}$ and ${ }^{84} \mathrm{Zr}$ and the neutron alignment is followed by the proton alignment in ${ }^{85} \mathrm{Nb}$

Thank You！

