DEFECT INDUCED MAGNETIC INTERACTIONS IN HIGHLY ORIENTED PYROLYTIC GRAPHITE (HOPG): A LOCAL INVESTIGATION USING TOPAD METHOD

S.N. Mishra¹, S.K. Mohanta^{1,2}, S.M. Davane¹, and S.K. Srivastava²

¹Dept. of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Mumbai-400005, India

²Dept. of Physics and Meteorology, Indian Institute of Technology, Kharagpur-721302, India Magnetism in solids generally occur in alloys/compounds containing d/f ions.

Recently, some carbon based systems e.g., polymerized fullerenes and highly oriented pyrolytic graphite (HOPG) have been reported to show room temperature ferromagnetism. [Nature, 413, 716(2001); Nature Physics, 5, 840 (2009); PRL, 91, 227201 (2004)]

- **❖** Total magnetization quite small ~10⁻⁶ emu.
- **❖** Ferromagnetism in HOPG is believed to arise from dangling bonds associated with defects.
- ***** Local magnetic studies are desirable

Our Approach:

■ Measure Hyperfine field for ¹⁹F -- TDPAD method (TIFR-BARC Pelletron accelerator facility, Mumbai)

Why 19F?

$$5/2$$
 + isomer with $T_{1/2}$ = 89 ns, g_N = 1.44; Q_N = -0.12 b Well suited for magnetic studies

i. Production of ¹⁹F

Via Heavy-ion reaction

$$^{12}C(^{12}C,\alpha p)^{19}F; E_{lab} = 40 \text{ MeV}$$

ii) Recoil implantation of probe

Implantation depth ~ 10 μ m Concentration of 19 F in host << 1ppm

- iii. The energetic ions also produce lots of defects
- iv. Spin rotation of γ -rays from the 5/2⁺ isomeric state in ¹⁹F and observation of spin rotation

TDPAD setup at TIFR accelerator facility

7 Tesla Cryo-magnetic system -- Temperature can be varied from 4~K to 500 K.

4 detectors (HPGe/La(Ce)Br₃) placed at 135° and 45°

Angular Distribution of γ-Rays and its Perturbation

The aligned probe nuclei precess in the "local" field. Emitting γ -rays are detected by one or more detectors placed in the reaction plane.

- Data collection: List mode
- Construct 2d spectra: (time vs energy)
- Projected energy spectrum show 197 keV line from 5/2⁺ state of ¹⁹F

- Life time spectra obtained by taking energy gated time projection
- Spin rotation spectra constructed from ratio $R(t) = (N_1-N_2)/(N_1+N_2)$

Results

- R(t) (measured in 1 T) show two frequencies
- @15 K
- $\square \quad \omega_L(1) = 64 \text{ MHz (Bhf} = 0.8 \text{ kG)};$ Rel. Int. 45%
- \square $\omega_L(2) = 93$ MHz (Bhf = 3.6 kG); Rel. Int. 55%
- 19F comes to rest at two lattice sites
- B_{hf}(T) Curie-Weiss type
- => Strong Paramagnetism
- No clear signature of ferromagnetic ordering

Absence of ferromagnetism confirmed by SQUID measurement of bulk susceptibility.

Density of states

magnetic moment on interstitial C atoms (right panel) mainly due to π electrons

How do we understand the results?

ab-initio density functional calculations using WIEN2K

- Calculations made for many Configurations
- (i) F @ subst sites
- (ii)F @ interstitial sites
- (iii) **subst.** F + 1 **vac**
- (iv) Inters. F + 1 vac
- (v) Subst. F + 1 int. C

Conf.	μ_{tot}	$\mu_{ m F}$	μ_{lnn-C}	μ_{2nn-C}	B _{hf} (kG)
(i)	1x10 ⁻⁴	0	0	0	001
(ii)	5x10 ⁻³	5x10 ⁻⁴	0	0	-0.271
(iii)	0.64	3x10 ⁻²	011	0.017	-1.12
(iv)	1.0	0.067	0.005	-0.01	93.08
(v)	1.32	0.02	-0.007	0.16	9.4

 $B_{\rm hf}$ observed for the majority fraction is close to the value calculated for configurations-v.

We therefore attribute it to F @ substitutional sites associated with one C atom at interstitial position.

The small B_{hf} of the minority fraction agrees with the value calculated for substitution F with one vacancy.

Conclusion:

Local measurements of 19F hyperfine field in HOPG by TDPAD technique does not show evidence of ferromagnetism. The results, however, reveal strong paramagnetism, due to defects induced by heavy-ion irradiation.

Thanks for your attention

