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Exact solution :

exact solution:
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Monopole contribution :

base-line = monopole interaction



11

curvature = quadrupole interaction
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Quadrupole contribution :

E0 + E2

exact
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+ something small

+ something small

“monopole shift”
(isotope shift /
isomer shift)

“quadrupole shift”

complicated ...

(PRA 81 (2010) 032507)

(Coord. Chem. Rev. 253 (2009) 594)
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Exact solution :
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shift of the base-line:
monopole shift
(isotropic charges in nucleus)



23

-1.05

-1.00

-0.95

-0.90

-0.85

-0.80

-0.75
0 20 40 60 80 100 120 140 160 180

no overlap
(shifted)
overlap

θ

E 
(u

ni
ts

 e
2 /

4π
ε 0

)

change of the curvature:
∼ quadrupole shift
(anisotropic charges in nucleus)
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change of the curvature:
∼ quadrupole shift
(anisotropic charges in nucleus)

An anisotropic electron distribution 
inside the nuclear volume

affects the quadrupole interaction.
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non-relativistic H-atom radial wave functions

non-relativistic relativistic
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well-known new
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isotope shift compare two isotopes
isomer shift compare source and absorber
Bohr-Weisskopf effect compare  μ-ratio with and without field
(hyperfine anomaly)
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isotope shift compare two isotopes
isomer shift compare source and absorber
Bohr-Weisskopf effect compare  μ-ratio with and without field
(hyperfine anomaly)

quadrupole anomaly compare Q-ratio from 4 measurements



31

The first quadrupole anomaly experiment has been performed !

High-precision quadrupole interaction experiments in a set of
4 suitably chosen molecules (FTMW-spectroscopy).

David Dewald & Jens-Uwe Grabow
Gottfried-Wilhelm-Leibniz-Universität, Hannover

Dewald & Grabow,
to be published

quadrupole anomaly δ = 7(1) ⋅ 10-6
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We sketched the mathematical formalism for 
the quadrupole shift (QS).

The QS is small: it is negligible for light elements, 
but for the heaviest elements it can be as large as 1%.

The QS can be calculated from first principles. 
Fully relativistic calculations with a finite nucleus 
are required for this ( FPLO code).

High-resolution molecular beam spectroscopy 
can observe the existence of the quadrupole shift 
through the quadrupole anomaly. A first experimental
result is available now.

Conclusions
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