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Exact solution :
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Monopole contribution :
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Quadrupole contribution :

E (units e?/4ne)
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(Coord. Chem. Rev. 253 (2009) 594)
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E (units e?/4ne)
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An anisotropic electron distribution

inside the nuclear volume

affects the quadrupole interaction.
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Quadrupole , Quadrupole
Interaction Shift

isotope shift compare two isotopes
isomer shift compare source and absorber
Bohr-Weisskopf effect compare p-ratio with and without field

(hyperfine anomaly)

29



-
|
o]t

Quadrupole , Quadrupole
Interaction Shift

isotope shift compare two isotopes

isomer shift compare source and absorber
Bohr-Weisskopf effect compare p-ratio with and without field
(hyperfine anomaly)

quadrupole anomaly compare Q-ratio from 4 measurements
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The first quadrupole anomaly experiment has been performed !

David Dewald & Jens-Uwe Grabow
Gottfried-Wilhelm-Leibniz-Universitat, Hannover

High-precision quadrupole interaction experiments in a set of
4 suitably chosen molecules (FTMW-spectroscopy).

'"PHF'°0 | T Hf'°O

quadrupole anomaly 8 =7(1) - 10¢ 179Hf328 177 Hf3ZS

Dewald & Grabow,
to be published
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Conclusions

We sketched the mathematical formalism for
the quadrupole shift (QS).

The QS is small: it is negligible for light elements,

but for the heaviest elements it can be as large as 1%.

The QS can be calculated from first principles.
Fully relativistic calculations with a finite nucleus

are required for this (=& FPLO code).

High-resolution molecular beam spectroscopy

can observe the existence of the quadrupole shift
through the quadrupole anomaly. A first experimental
result is available now.
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A series expansion of the interaction between a nucleus and its surrounding electron distribution provides
terms that are well-known in the study of hyperfine interactions: the familiar quadrupole interaction and the
less familiar hexadecapole interaction. It the penetration of electrons into the nucleus is taken into account,
various corrections to these multipole interactions appear. The best known correction is a scalar term related
to the isotope shift and the isomer shift. This paper discusses a related tensor correction, which modifies the
quadrupole interaction if electrons penetrate the nucleus: the quadrupole shift. We describe the mathematical
formalism and provide first-principles calculations of the quadrupole shift for a large set of solids. Fully relativistic
calculations that explicitly take a finite nucleus into account turn out to be mandatory. Our analysis shows that
the quadrupole shift becomes appreciably large for heavy elements. Implications for experimental high-precision
studies of quadrupole interactions and quadrupole moment ratios are discussed. A literature review of other small
quadrupole-like effects is presented as well (pseudoquadrupole effect, isotopologue anomaly, etc. ).

DOI: 10.1103/PhysRevA.81.032507 PACS number(s): 31.30.Gs, 31.15.aj, 21.10.Ky, 33.20.Bx
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Electron penetration into the nucleus and its effect on the quadrupole interaction

We sketched the mathematical formalism for
the quadrupole shift (QS).

The QS is small: it is negligible for light elements,
but for the heaviest elements it can be as large as 1%.

The QS can be calculated from first principles.

Fully relativistic calculations with a finite nucleus
are required for this (=& FPLO code).

High-resolution molecular beam spectroscopy
can observe the existence of the quadrupole shift
through the quadrupole anomaly. A first experimental

result is available now. y



