Quadrupole interaction in the solid halogens – a new (not final) look

H. Haas

Instituto Tecnológico e Nuclear, Estrada Nacional 10, P-2685 Sacavém, Portugal, and CERN/EP-SC, CH-1211 Geneve-23, Switzerland, e-mail: heinz.haas@cern.ch

Experimentalists credo (old):

If theory and experiment do not agree, theory must be wrong

Quadrupole interaction in the solid halogens – a new (not final) look

H. Haas

Instituto Tecnológico e Nuclear, Estrada Nacional 10, P-2685 Sacavém, Portugal, and CERN/EP-SC, CH-1211 Geneve-23, Switzerland, e-mail: heinz.haas@cern.ch

Experimentalists credo (old):

If theory and experiment do not agree, theory must be wrong

Theorists credo (new):

If theory and experiment do not agree, experiment must be wrong

Quadrupole interaction in the solid halogens – a new (not final) look

H. Haas

Instituto Tecnológico e Nuclear, Estrada Nacional 10, P-2685 Sacavém, Portugal, and CERN/EP-SC, CH-1211 Geneve-23, Switzerland, e-mail: heinz.haas@cern.ch

Experimentalists credo (old):

If theory and experiment do not agree, theory must be wrong

Theorists credo (new):

If theory and experiment do not agree, experiment must be wrong

I will try to convince you:

If theory and experiment do agree, they may both be wrong !

The structure of the solid halogens

The experimental situation

The experimental situation

A mess !

Ab initio Calculations of the Electric Field Gradients in Solids in Relation to the Charge Distribution*

Karlheinz Schwarz and Peter Blaha

Institut für Technische Elektrochemie, Technische Universität Wien, Vienna, Austria

Z. Naturforsch. 47 a, 197-202 (1992); received August 3, 1991

Table 3. Electric field gradient of solid Cl_2 , Br_2 , and I_2 . Most experimental data are taken from [20] except for Cl_2 as specified.

	Cl ₂	Br ₂	I ₂
Isotope	³⁵ Cl	⁷⁹ Br	¹²⁷ I
$Q/mb = 10^{-31} m^2$	-82.5	331	- 789
EFG theory $(10^{21} V/m^2)$ exp.	+ 53.7 ± 54.6	+96.6 ±95.6	+118.8 ±113.0
η theory exp.	0.07 0.06 [21] 0.4 [22] 0.2 [23]	0.19 0.20	0.32 0.18

The advent of theory

More new theories

More new theories

Structural parameters as function of temperature

Structural data extrapolated to T = 0

	Cl ₂	Br ₂	1 2
R _{mol} (A)	1.9881	2.2809	2.6660
R _{sol} (A)	1.9950	2.3006	2.7124
θ (°)	57.093	57.339	57.863
a (A)	6.1360	6.5672	7.1191
b (A)	4.3889	4.4678	4.6600
c (A)	8.1492	8.6938	9.7962

Experimental frequencies (MHz) extrapolated to T = 0

	Cl ₂	Br ₂	I ₂
v _Q (mol)	111.79	810.0	2452.6
v _Q (sol)	108.97	763.1	2156.2
v _Q ⁰ (sol)	109.79	768.2	2160.0

Temperature dependence Cl₂ (Nakamura 67)

Halogen Q (with H. Petrilli)

WIEN2k results (10²¹ V/m²)

	Cl ₂	Br ₂	l ₂
EFG(mol)	57.27	112.99	152.88
EFG(sol)	54.11	97.86	119.75
δν/ν ₀ (cal)	0.055	0.134	0.217
δν/ν ₀ (exp)	0.018	0.052	0.119

WIEN2k results (10²¹ V/m²)

	Cl ₂	Br ₂	l ₂
EFG(mol)	57.27	112.99	152.88
EFG(sol)	54.11	97.86	119.75
δν/ν ₀ (cal)	0.055	0.134	0.217
δν/ν₀ (exp)	0.018	0.052	0.119

Conclusion:

Present DFT overestimates the frequency shift due to the intermolecular interaction by a factor 2 to 2.5

WIEN2k results (10²¹ V/m²)

	Cl ₂	Br ₂	l ₂
EFG(mol)	57.27	112.99	152.88
EFG(sol)	54.11	97.86	119.75
δν/ν ₀ (cal)	0.055	0.134	0.217
δν/ν₀ (exp)	0.018	0.052	0.119

Conclusion:

Present DFT overestimates the frequency shift due to the intermolecular interaction by a factor 2 to 2.5

Assumption:

The calculated intermolecular interaction overestimates η by a similar factor

Final results

२ ००
2.00
).75
217
119
320
176

Comparison with experiments

	Cl ₂	Br ₂	I ₂
EFG(mol)	57.27	112.99	152.88
EFG(sol)	54.11	97.86	119.75
δν/ν ₀ (cal)	0.055	0.134	0.217
δν/ν ₀ (exp)	0.018	0.052	0.119
ղ (cal)	0.071	0.183	0.320
ղ (cor)	0.023	0.071	0.176
ղ (pub)	0.0-0.2	0.200	0.175

Conclusions: Experiment for Br_2 must be grossly wrong The low value of η (>.3) for Cl_2 is favored

Expanded lattice calculations

Expanded lattice calculations

With proper choice of the degree of expansion, fixed to the result at T=0, one can compute the EFG also for high T

Temperature dependence Cl₂ (Nakamura 67)

Temperature dependence CI_2 (new)

Temperature dependence Br₂

Temperature dependence I_2

General conclusions

- We need a proper theory for treatment of the intermolecular interaction !
- For better calculations one would require more accurate crystal structure data
- A remeasurement of η for solid Br_{2} is highly recommended
- Interesting effects are predicted for the temperature dependence of the NQR frequency for Br₂ and I₂