Modeling Complex Diffusion Mechanisms in $L1_2$ -Structured Compounds

Supported by	NSF grant DMR 06-06006 (Metals Program)
and	KY EPSCoR grant RSF-012-03

with	Gary S. Collins at Washington State University
and	James Castle at NKU

Modeling Complex Diffusion Mechanisms in $L1_2$ -Structured Compounds

Overall goal: To determine when PAC and other hyperfine methods can be used to identify diffusion mechanisms

- 1. Diffusion mechanisms in intermetallic compounds
- 2. Recent PAC findings in *L*1₂-structured compounds
- 3. Stochastic models of complex mechanisms
- 4. Simulations for $L1_2$ compounds

example: simple vacancy diffusion

Only first-neighbor jumps allowed

example: 6-jump cycle

Possible alternative: divacancy

- How to distinguish diffusion mechanisms in alloys (elements *A* and *B*) experimentally?
- Conventional radiotracer sectioning methods
 - Measure diffusion coefficients of each element, D_A and D_B and compare ratios.
 - $E.g. \text{ in } A_3B(L1_2)^*$
 - $0.11 < D_A/D_B < 0.85$ for 6-jump cycle
 - $0.07 < D_A/D_B < 3$ for divacancy
- Perturbed angular correlation spectroscopy?

*Koiwa, Numakura, Ishioka, *Def. & Diff. Forum* **143-147**, 209 (1997)

PAC measurements of Cd jump rates in L1₂ structured compounds*

• RIn₃, RGa₃, RSn₃ with R=rare earth

PAC measurements of Cd jump rates in L1₂ structured compounds

- RIn_3 , RGa_3 , RSn_3 with R=rare earth
- Jump rates at phase boundaries:

Collins, Jiang, Bevington, Selim, Zacate, *PRL* **102**, 155901 (2009)

Simple vacancy mechanism

PAC measurements of Cd jump rates in L1₂ structured compounds

- RIn_3 , RGa_3 , RSn_3 with R=rare earth
- Jump rates at phase boundaries indicate complex diffusion mechanism in light rare earth tri-indides
- No defects observed in spectra
- Is it possible to observe direct evidence?

436 different binary compounds with *L*1₂ structure

Method of simulating PAC spectra

Stochastic model of Winkler and Gerdau:

$$G_{2} \bigoplus_{q} G_{q} \exp \left[\mathbf{k} \lambda_{q} + i \omega_{q} \right]_{\mathbf{k}}$$

where $G_{q} = \sum_{m_{1}m_{2}P} \blacktriangleleft_{1} 2^{T+m_{1}+m_{2}} \begin{pmatrix} I & I & k \\ m_{1}' & -m_{1} & P \end{pmatrix} \begin{pmatrix} I & I & k \\ m_{2}' & -m_{2} & P \end{pmatrix}$ $\sum_{abr} p_{a} \$m_{2}m_{2}' | N_{q}' \$m_{q}' | am_{1}m_{1}'$

The $\mathbf{A}_q + i\omega_q$ and $|N_q|$ are eigenvalues and eigenvectors of the Blume matrix

Z. Phys. 262, 363-376 (1973)

Method of simulating PAC spectra

- Model completely specified by
 - 1. List of Hamiltonians for all accessible states
 - 2. Transition rates among the states
 - 3. Initial occupations of accessible states
- Use Stochastic Hyperfine Interactions
 Modeling Library (SHIML) to calculate spectra

Simple vacancy diffusion in L1₂ compounds

Review of the simple vacancy model*

15 different EFGs4 transition ratesin the near-neighbor approximation

> *Muhammed, Zacate, Evenson, *Hyperfine Interact.* **177**, 45 (2007)

Simple vacancy diffusion in L1₂ compounds

Review of the simple vacancy model*

transition rates adjacent: $r_a = w_1$ exchange: $r_x = w_2$ $r_d = 5 \P - V \downarrow_{w_3}$ detrap: $r_{t} = 10 V w_{A}$ trap: [V] = vacancy concentration w_1 - w_4 are from the 5-frequency model

15 different EFGs 4 transition rates r_x – exchange r_a – adjacent r_d – detrap r_t – trap r_t or r_d

> *Muhammed, Zacate, Evenson, *Hyperfine Interact.* **177**, 45 (2007)

Complex Diffusion in $L1_2$ compounds

Divacancy in A_3B 45 EFGs in the near neighbor approximation Simulating Simple Vacancy Diffusion in Cu₃Au-Structured Compounds...

Deriving stochastic models linked to defect jump rates

Developed a nearly automated 3 step process

- Determine all possible configurations of defects near the probe and atomic jumps among them
- 2. Determine unique EFGs to a cutoff distance from the probe and rates of transition
- 3. Correct rates for transitions out of defect-free EFGs

Deriving stochastic models linked to defect jump rates

- Step 1
 - Types of defect jumps identified and assigned rates w_k index of j^{th} degenerate
- Step 2
 - Determine unique EFGs: $k \P, j$
 - Determine reorientation rate from EFG q to EFG r.

configuration with EFG q

$$R_{rq} = \sum_{ij} p_{k} \langle q, j \rangle W_{k} \langle q, j \rangle = 0 \text{ or a rate } w_{k}$$

$$p_{k} \langle q, i \rangle = P_{k} \langle q, i \rangle \sum_{j} P_{k} \langle q, j \rangle = P_{k} \langle q, j \rangle probabilities of defect configurations, i.e. defect concentrations$$

Deriving stochastic models linked to defect jump rates

• Step 2

- index of *j*th degenerate configuration with EFG *q*
- Determine unique EFGs: $_{k}$ \P, j
- Determine reorientation rate from EFG q to EFG r.

$$R_{rq} = \sum_{ij} p_{k} \langle q, j \rangle W_{k} \langle q, j \rangle = P_{k} \langle q, j \rangle \sum_{j} P_{k} \langle q, j \rangle$$

$$0 \text{ or a rate } w_{k}$$

• Step 3

- For *q* indexing a defect free EFG, $\sum_{j} P_{k} \langle q, j \rangle \rightarrow \infty$ so that $R_{rq} = N_{rq}$ lefect wnumber of jump paths rq a rate w_{k}

Comparison of diffusion models in $L1_2$

- Defect charges chosen so that contribution of each defect to the EFG is $5.66|V_0|$ where $|V_0|$ is the strength of the lattice EFG.
- All jump rates = ω_Q
- All [defect] = 0.01

Comparison of diffusion models – part 2

- point charge parameters for LaIn₃
- thermal vacancies with $[V] = \exp(1.4)$ $\exp(-(0.36 \text{ eV})/k_BT)$
- vacancy jump rates: $w_A = 1.3 \cdot 10^5 \omega_Q$ $\exp(-(0.4 \text{ eV})/k_BT)$ $w_B = 1.3 \cdot 10^5 \omega_Q$ $\exp(-(0.5 \text{ eV})/k_BT)$

Comparison of diffusion models – part 2

Comparison of diffusion models – part 2

Summary: Modeling Complex Diffusion Mechanisms...

- Developed a 3 step process to develop a stochastic model of fluctuating hyperfine interactions for diffusion mechanisms – <u>applicable to any structure</u>
- 2. Demonstrated that simulations of PAC spectra for simple vacancy, divacancy, and 6-jump cycle diffusion mechanisms can look different
- 3. Showed for a physically reasonable set of parameters that one can obtain a signal due to defects in the divacancy mechanism

Work continues to determine conditions under which one can unambiguously identify diffusion mechanisms