PAC study of dynamic hyperfine interactions at ¹¹¹In-doped Sc₂O₃ semiconductor and comparison with *ab initio* calculations

E. L. Muñoz¹, D. Richard¹, A.W. Carbonari², L. A. Errico¹ and M. Rentería¹

¹Departamento de Física and IFLP (CONICET), La Plata, Argentina, ² Instituto de Pesquisas Energéticas y Nucleares, São Paulo, Brazil

Motivations

➤ The inclusion of impurities in semiconductors have broad significance for the basic and applied research.

Motivations

➤ The inclusion of impurities in semiconductors have broad significance for the basic and applied research.

➤ The experimental characterizations at impurity sites in oxides have a fundamental importance for the evaluation of the *ab initio electronic structure calculation* predictions of structural and electronic properties in doped systems.

Motivations

➤ The inclusion of impurities in semiconductors have broad significance for the basic and applied research.

➤ The experimental characterizations at impurity sites in oxides have a fundamental importance for the evaluation of the *ab initio electronic structure calculation* predictions of structural and electronic properties in doped systems.

➤ To correctly understand the underlying physics of the phenomenological model used in perturbation factors it is necessary a theoretical study based in first-principles calculations.

Outline

- Studied system
- PAC technique
- > Experimental results
- FP-APW+lo calculations
- Final remarks

Studied system

- PAC technique

FP-APW+lo calculations

Final remarks

Studied system: Sc₂O₃

Site C

• The Sc_2O_3 oxide crystallizes in the bixbiyte structure and presents two cation sites: C and D.

• The relative abundance is $f_C/f_D=3:1$.

• The ONN coordination is 6 for both sites.

• The D site is axially symmetric and the C site presents high asymmetry.

Studied system: Sc₂O₃

Site C

Site D

• The relative abundance is $f_C/f_D=3:1$.

• The ONN coordination is 6 for both sites.

• The D site is axially symmetric and the C site presents high asymmetry.

Method	a (Å)	-и	x	Y	Z
Experimental [1]	9.845	0.03546	0.39137	0.15477	0.38137
FP-APW+lo (LDA)	9.708	0.0364	0.3915	0.1545	0.3810
FP-APW+lo (WC-GGA)	9.798	0.0361	0.3913	0.1543	0.3812

[1] M. Marezio, Acta Cryst. 20, 723 (1966).

Outline

Studied system

PAC technique

► FP-APW+lo calculations

¹¹¹Cd probe and sample preparation

Some drops of ¹¹¹InCl₃ were deposited onto a Sc_2O_3 (99.999% purity) powder pellet. The ¹¹¹In thermal diffusion was performed in N₂ atmosphere (3x10⁸ Pa) in steps from 423 K to 1073 K. The temperature dependence of the EFG was measured in the temperature range 10 K – 900 K.

¹¹¹Cd probe and sample preparation

Some drops of ¹¹¹InCl₃ were deposited onto a Sc_2O_3 (99.999% purity) powder pellet. The ¹¹¹In thermal diffusion was performed in N₂ atmosphere (3x10⁸ Pa) in steps from 423 K to 1073 K. The temperature dependence of the EFG was measured in the temperature range 10 K – 900 K.

Dynamic Hyperfine Interactions: Bäverstam and Othaz model λ_r : Abragam and Pound constant $G_{22}(t) = G_{22}^{s}(t) \cdot G_{22}^{d}(t)$ λ_{q} : recovery constant ($\lambda_{q}^{-1} = \tau_{q}$) $\lambda_{g} = \gamma(1-\alpha)$ $\lambda_{r} = \alpha\gamma$ $G_{22}^{d}(t) = \frac{\lambda_{g}}{\lambda_{g} + \lambda_{r}} + \frac{\lambda_{r}}{\lambda_{g} + \lambda_{r}} e^{-(\lambda_{g} + \lambda_{r})t}$ $\alpha = \frac{\lambda_{r}}{\lambda_{g} + \lambda_{r}}$ $\gamma = \lambda_{g} + \lambda_{r}$ $G_{22}^{d}(t) = (1-\alpha) + \alpha e^{-\gamma t}$

Hyperfine Parameters vs. T

Hyperfine Parameters vs. T

FP-APW+lo calculations Final remarks

FP-APW+lo results in pure Sc₂O₃

Comparison between APW+lo results using experimental and refined structural parameters

Daramatara	Aprox		Site D			Site C			
	Aprox	d _{NN}	V ₃₃	η	d _{NN}	V ₃₃	η		
Experimental	LDA	2.12	+4.53	0.00	2.08	-2.98	0.71		
Experimentai	CW	2.12	+4.52	0.00	2.08	-2.97	0.69		
rofined	LDA	2.12	+4.69	0.00	2.09	-3.11	0.53		
	CW	2.12	+4.59	0.00	2.09	-2.92	0.52		
PAC in ⁴⁴ Sc results [1]			4.19(2)	0.00		2.741(7)	0.630(3)		

Comparison between APW+lo results using experimental and refined structural parameters

Daramatara	Aprox		Site D			Site C			
	Aprox	d _{NN}	V ₃₃	η	d _{NN}	V ₃₃	η		
Experimental	LDA	2.12	+4.53	0.00	2.08	-2.98	0.71		
Experimental	CW	2.12	+4.52	0.00	2.08	-2.97	0.69		
rofinod	LDA	2.12	+4.69	0.00	2.09	-3.11	0.53		
renned	CW	2.12	+4.59	0.00	2.09	-2.92	0.52		
PAC in ⁴⁴ Sc re	sults [1]		4.19(2)	0.00		2.741(7)	0.630(3)		

Comparison between APW+lo results using experimental and refined structural parameters

Daramotoro	Anrox		Site D		Site C			
	Aprox	d _{NN}	V ₃₃	η	d _{NN}	V ₃₃	η	
Experimental	LDA		+4.53	0.00	2.08	-2.98	0.71	
Experimental	CW	2.12	+4.52	0.00	2.08	-2.97	0.69	
rofined	LDA	2.12	+4.69	0.00	2.09	-3.11	0.53	
	CW	2.12	+4.59	0.00	2.09	-2.92	0.52	
PAC in ⁴⁴ Sc re	esults [1]		4.19(2)	0.00		2.741(7)	0.630(3)	

Total Density of States Sc₂O₃:Cd

Neutral cell (Cd⁰)

FP-APW+lo results in Cd-doped Sc₂O₃ for the unrelaxed and relaxed cell*

System			9	Site D			Site C			
System	Approx.	d _{NN}	V ₃₃	η	Dir. V ₃₃	d _{nn}	V ₃₃	η	Dir. V ₃₃	
Pure Sc2O3	LDA	2.12	4.63	0.0	[111]	2.08 2.12 2.16	-2.98	0.71	[0 -1 0.7]	
Unrelaxec Sc ₂ O ₃ :Cd	l LDA	2.12	8.65	0.0	[111]	2.08 2.12 2.16	-4.91	0.65	[0 -1 0.7]	
Relaxed Sc ₂ O ₃ :Cd	LDA	2.28	8.05	0.0	[111]	2.17 2.30 2.31	6.75	0.74	[0 -0.9 1]	
PAC resu	lts (T=90	00 K)	8.22 ₁	0.0	[111]	_	6.56 ₁	0.70 ₁	[0 -1 1]	

* Cd-doped Sc_2O_3 results for the charged cell (Cd⁻¹)

$$[V_{33}]=10^{21} V/m^2; [d_{NN}]=Å$$

FP-APW+lo results in Cd-doped Sc₂O₃ for the unrelaxed and relaxed cell*

System			9	Site D		Site C			
System	Approx.	d _{NN}	V ₃₃	η	Dir. V ₃₃	d _{NN}	V ₃₃	η	Dir. V ₃₃
Pure Sc2O3	LDA	2.12	4.63	0.0	[111]	2.08 2.12 2.16	-2.98	0.71	[0 -1 0.7]
Unrelaxed Sc ₂ O ₃ :Cd	LDA	2.12	8.65	0.0	[111]	2.08 2.12 2.16	-4.91	0.65	[0 -1 0.7]
Relaxed Sc ₂ O ₃ :Cd	LDA	2.28	8.05	0.0	[111]	2.17 2.30 2.31			
PAC resu	lts (T=90	00 K)	8.22 ₁	0.0	[111]	-	6.56 ₁	0.70 ₁	[0 -1 1]

 $[V_{33}] = 10^{21} V/m^2; [d_{NN}] = Å$

* Cd-doped Sc₂O₃ results for the charged cell (Cd⁻¹)

FP-APW+lo results in Cd-doped Sc₂O₃ for the unrelaxed and relaxed cell*

System	APW ·		9	Site D			Site C			
System	Approx.	d _{NN}	V ₃₃	η	Dir. V ₃₃	d _{nn}	V ₃₃	η	Dir. V ₃₃	
Pure Sc2O3	LDA	2.12	4.63	0.0	[111]	2.08 2.12 2.16	-2.98	0.71	[0 -1 0.7]	
Unrelaxed Sc ₂ O ₃ :Cd	LDA	2.12	8.65	0.0	[111]	2.08 2.12 2.16	-4.91	0.65	[0 -1 0.7]	
Relaxed Sc ₂ O ₃ :Cd	LDA					2.17 2.30 2.31	6.75	0.74	[0 -0.9 1]	
PAC resu	lts (T=90	00 K)	8.22 ₁	0.0	[111]	-	6.56 ₁	0.70 ₁	[0 -1 1]	

* Cd-doped Sc_2O_3 results for the charged cell (Cd⁻¹)

$$[V_{33}]=10^{21} V/m^2; [d_{NN}]=Å$$

EFG dependence of the charge state of the Cd impurity

Cell	APW		Sit	te D		Site C			
Charge State	Appro x.	d _{NN}	V ₃₃	η	Dir. V ₃₃	d _{NN}	V ₃₃	η	Dir. V ₃₃
Uncharged Cell	WC	2.22	+8.24	0.00	[111]	2.10 2.24 2.32	+3.06	0.64	[0 0 1]
Neutral Cell	WC								
Charged Cell	WC								

These results were checked with the others approximations, LDA and GGA $[V_{33}]=10^{21} V/m^2; [d_{NN}]=Å$

- Uncharged cell (Cd⁺¹): 1 removed electron in the cell
- Neutral cell (Cd⁰):neutral Cd atom
- Charged cell (Cd⁻¹): 1 added electron in the cell

EFG dependence of the charge state of the Cd impurity

Cell	APW		Sit	te D		Site C			
Charge State	Appro x.	d _{NN}	V 33	η	Dir. V ₃₃	d _{NN}	V 33	η	Dir. V ₃₃
Uncharged Cell	WC	2.22	+8.24	0.00	[111]	2.10 2.24 2.32	+3.06	0.64	[0 0 1]
Neutral Cell	WC	2.25	+8.32	0.00	[111]	2.14 2.28 2.32			
Charged Cell	WC	2.28	+8.16	0.00	[111]	2.19 2.31 2.32			

These results were checked with the others approximations, LDA and GGA $[V_{33}]=10^{21} V/m^2; [d_{NN}]=Å$

- Uncharged cell (Cd⁺¹): 1 removed electron in the cell
- Neutral cell (Cd⁰): neutral Cd atom
- Charged cell (Cd⁻¹): 1 added electron in the cell

EFG dependence of the charge state of the Cd impurity

Cell	APW		Sit	te D		Site C			
Charge State	Appro x.	d _{NN}	V ₃₃	η	Dir. V ₃₃	d _{NN}	V 33	η	Dir. V ₃₃
Uncharged Cell	WC	2.22	+8.24	0.00	[111]	2.10 2.24 2.32	+3.06	0.64	[0 0 1]
Neutral Cell	WC					2.14 2.28 2.32	-3.81	0.34	[0 -0.7 1]
Charged Cell	WC					2.19 2.31 2.32	+6.50	0.71	[0 -0.8 1]

These results were checked with the others approximations, LDA and GGA $[V_{33}]=10^{21} V/m^2; [d_{NN}]=Å$

- Uncharged cell (Cd⁺¹): 1 removed electron in the cell
- Neutral cell (Cd⁰): neutral Cd atom
- Charged cell (Cd⁻¹): 1 added electron in the cell

Cd at D site

	Uncharged Cell			Ne	eutral C	ell	Charged Cell			
	V ₁₁	V ₂₂	V ₃₃	V ₁₁	V ₂₂	V ₃₃	V ₁₁	V ₂₂	V ₃₃	
р			6.68			6.36			6.00	
d			1.78						2.35	
s-d										
total										

Cd at D site

	Unc	harged	Cell	Ne	utral C	ell	Charged Cell			
	V ₁₁	V ₂₂	V ₃₃	V ₁₁	V ₂₂	V ₃₃	V ₁₁	V ₂₂	V ₃₃	
р	-3.34	-3.34	6.68	-3.18	-3.18	6.36	-3.00	-3.00	6.00	
d	-0.89	-0.89	1.78	-1.08	-1.08	2.16	-1.17		2.35	
s-d										
total	-4.13	-4.13	8.26	-4.16	-4.16	8.32	-4.07	-4.07	8.15	

Cd at D site

	Uncharged Cell			Neutral Cell			Charged Cell		
	V ₁₁	V ₂₂	V ₃₃	V ₁₁	V ₂₂	V ₃₃	V ₁₁	V ₂₂	V ₃₃
p	-3.34	-3.34	6.68	-3.18	-3.18	6.36	-3.00	-3.00	6.00
d	-0.89	-0.89	1.78	-1.08	-1.08	2.16	-1.17		2.35
s-d									
total	-4.13	-4.13	8.26	-4.16	-4.16	8.32	-4.07	-4.07	8.15

Cd at C site

	Uncharged Cell			Neutral Cell			Charged Cell		
	V ₁₁	V ₂₂	V ₃₃	V ₁₁	V ₂₂	V ₃₃	V ₁₁	V ₂₂	V ₃₃
p									
d									
s-d	0.17	-0.21	0.05	0.04	0.15	-0.19	0.02	0.13	-0.15
total	-0.5	-2.53	3.03	1.25	2.57	-3.82	-0.93	-5.57	6.50

 $[V_{ii}] = 10^{21} V/m^2$

Cd at D site

	Uncharged Cell			Neutral Cell			Charged Cell		
	V ₁₁	V ₂₂	V ₃₃	V ₁₁	V ₂₂	V ₃₃	V ₁₁	V ₂₂	V ₃₃
p	-3.34	-3.34	6.68	-3.18	-3.18	6.36	-3.00	-3.00	6.00
d	-0.89	-0.89	1.78	-1.08	-1.08	2.16	-1.17		2.35
s-d				0.10		-0.20	0.10		-0.20
total	-4.13	-4.13	8.26	-4.16	-4.16	8.32	-4.07	-4.07	8.15

Cd at C site

	Uncharged Cell			Neutral Cell			Charged Cell		
	V ₁₁	V ₂₂	V ₃₃	V ₁₁	V ₂₂	V ₃₃	V ₁₁	V ₂₂	V ₃₃
p			-3.12			-5.22			4.87
d			6.12			1.39			1.78
s-d			0.05			-0.19			-0.15
total	-0.5	-2.53	3.03	1.25	2.57	-3.82	-0.93	-5.57	6.50

 $[V_{ii}] = 10^{21} V/m^2$

Partial Density of States Cd-4d

EFG calculated in Cd at site D does not present charge state dependence.

EFG in Cd at site C has a strong charge state dependence.

➢ The Abragam and Pound constant at site C is larger of that of site D in all the temperature range.

Cell	APW	Site	D	Site C		
Charge State	Approx.	V ₃₃	η	V ₃₃	η	
Cd ⁺¹	WC-GGA	+8.24	0.0	+3.06	0.64	
Cd ^o	WC-GGA	+8.32	0.0	-3.81	0.34	
Cd ⁻¹	WC-GGA	+8.16	0.0	+6.50	0.71	

Final remarks

➢ From this experimental and *ab initio* approach, we can conclude that the dynamic interaction observed at Cd impurities located at C sites is more intense than the dynamic interaction at the D site. These behavior of the EFG is attributed to the symmetry of the each site.

Final remarks

➢ From this experimental and *ab initio* approach, we can conclude that the dynamic interaction observed at Cd impurities located at C sites is more intense than the dynamic interaction at the D site. These behavior of the EFG is attributed to the symmetry of the each site.

➢ We can see that the increase of the EFG dependence with the charge state of the impurity is correlated with an increase of the strength of the dynamic interaction.

Final remarks

➢ From this experimental and *ab initio* approach, we can conclude that the dynamic interaction observed at Cd impurities located at C sites is more intense than the dynamic interaction at the D site. These behavior of the EFG is attributed to the symmetry of the each site.

> We can see that the increase of the EFG dependence with the charge state of the impurity is correlated with an increase of the strength of the dynamic interaction.

➢ Finally, we conclude that an *ab initio* study can help to understand the underlying physics described by the phenomenological Abragam and Pound model.

Cd- doped In₂O₃

In₂O₃:Cd – HFIs vs. T

Cd-doped SnO

Charge state	Aprox.	d _{NN (Å)}	h	$V_{33(10}^{21}V/m^2)$	
Descargada	LDA	2.257	0.000	+7.79	HFI2
Neutra	LDA	2.266	0.000	+5.26	
Cargada	LDA	2.368	0.000	-4.52	

