

NMR-ON study of ¹⁹⁷PtNi

T. Ohtsubo S. Ohya, Y. Masamori, T. Izumikawa, (Niigata University) S. Muto(KEK),

K. Nishimura(Toyama University)

NMR-ON study

- Low-temperature nuclear orientation is useful to get a polarized unstable nuclei system.
- Nuclear magnetic resonance of oriented nuclei (NMR-ON) has been widely applied in the study of the electromagnetic properties of unstable nuclei and hyperfine interactions of dilute impurities in ferromagnetic metals.

Point nucleus

Hyperfine anomaly

Magnetic Hyperfine interaction of a nuclear state with magnetic moment distribution $\mu(r)$ in a magnetic hyperfine field with radial distribution $B_{\rm hf}(r)$

$$-\mu B_{\rm hf} = -\int \mu(r) B_{\rm hf}(r) dr = -\mu B_{\rm hf}(0)(1+\varepsilon)$$

single-level anomaly(ϵ): deviation from the point-dipole interaction (Bohr-Weisskopf effect)

Bohr Weisskopf effect

$$\frac{\nu^{(1)}}{\nu^{(2)}} \frac{g^{(2)}}{g^{(1)}} = 1 + {}^{1}\Delta^{2} = \frac{1 + \varepsilon^{(1)}}{1 + \varepsilon^{(2)}} \approx 1 + \varepsilon^{(1)} - \varepsilon^{(2)}$$

Anomaly factor (single particle model)

$$\varepsilon_{\rm s.p.} = -\left[\alpha_S \left\{ b_2 \left(+ \frac{2}{5} \zeta \left(\frac{R}{R_N} \right)^2 \right)_{\rm s.p.} + b_4 \left(+ \frac{4}{7} \zeta \left(\frac{R}{R_N} \right)^4 \right)_{\rm s.p.} \right] \right\}$$

Anomaly factor including core polarization and mesonic current effects (Fujita Arima)

$$\varepsilon = -0.62 b_S \left\langle \left(\frac{R}{R_N}\right)^2 \right\rangle_{VN} - 0.38 b_S \left\langle \left(\frac{R}{R_N}\right)^2 \right\rangle_{VN}$$

$$+\alpha_{L}\left\{\frac{3}{5}b_{2}\left\langle\left(\frac{R}{R_{N}}\right)^{2}\right\rangle_{\text{s.p.}}+\frac{3}{7}b_{4}\left\langle\left(\frac{R}{R_{N}}\right)^{4}\right\rangle_{\text{s.p.}}\right\} \times \frac{1}{\mu}\left\{\pm g_{s}^{\text{VN}}\frac{3\left(+\frac{1}{2}\right)}{4\left(+1\right)^{2}}+\frac{3}{4}\frac{g_{s}^{\text{VN}}}{\left(g_{s}^{N}-g_{l}\right)^{2}}\right\} - \delta\mu_{\text{mes}}\right\}$$

 b_s :electron coefficients R/R_N :radial integrals of nucleus(H.H.Stroke and R.J.Blin-Style, PR123(61)1326

NMR in ferromagnetic metal (Fe, Ni,..)

Resonance frequency (magnetic interaction)

$$v = \frac{g\mu_N}{h} B_{hf} + \P + K B_0$$
$$= v_0 + \frac{dv}{dB_0} \cdot B_0$$

HFA no or very small deference between isotopes

$${}^{1}\Delta^{2} = \frac{v_{0}^{1}}{v_{0}^{2}} \frac{dv_{2}}{dv_{1}} - 1$$

Hyperfine anomaly of Yttrium isotopes

Platinum isotope

Nucleus	I^{π}	$T_{1/2}$	μ (μ _N)
¹⁹¹ Pt	3/2-	2.9d	-0.494(8)
¹⁹⁵ Pt	1/2-	stable	+0.60952(6)
¹⁹⁷ Pt	1/2-	18.3h	0.51(2)

¹⁹¹Pt*Ni*: $v_0 = 84.349(4)$ MHz dv/dB = -2.449(8) MHz/T G. Seewald et al.: Phys. Rev. B66, 174401, (2002)

Decay scheme of ¹⁹⁷**Pt**

Sample preparation

- The samples of ¹⁹⁷Pt*Ni* were prepared by the thermal neutron irradiation method.
- Thin alloy foils of PtNi (0.1 at. % of the 96 % enriched ¹⁹⁶Pt, 2.6µm thickness) were irradiated in a reactor at the Japan Atomic Energy Research Institute.
- After irradiation, the sample was annealed in vacuum for 30min. at 800°C.

³He/⁴He dilution refrigerator

Cool down to 7 mK

NMR-ON ¹⁹⁷PtNi

NMR-ON study for ¹⁹¹PtNi (Munich Univ.)

G. Seewald et al.: Phys. Rev. B66, 174401, (2002)

Hyperfine anomaly ¹⁹¹⊿¹⁹⁷ method 1

$$I^{\pi}$$
 v₀(MHz) g-factor
¹⁹⁷PtNi 1/2⁻ 230.7(2) 1.02(4)
¹⁹¹PtNi 3/2⁻ 84.349(4) 0.329(3)

$${}^{191}\Delta^{197} = \frac{\nu_0^{191}}{\nu_0^{197}} \frac{g({}^{197}Pt)}{g({}^{191}Pt)} - 1 = +13(2)\%$$

 single particle
 +0.2%
 Phys. Rev. 123, 1316 (1961)

 core polarization
 -0.6%
 Nucl. Phys. A254, 513 (1975)

Hyperfine anomaly $^{191}\Delta^{197}$ method 2

$$I^{\pi} \qquad v_{0}(\text{MHz}) \qquad \text{d} \nu/\text{d}B(\text{MHz/T})$$

$$^{197}\text{Pt}Ni \qquad 1/2^{-} \qquad 230.7(2) \qquad -6.2(5)$$

$$^{191}\text{Pt}Ni \qquad 3/2^{-} \qquad 84.349(4) \qquad -2.449(8)$$

$$^{191}\Delta^{197} = \frac{v_{0}^{191}}{v_{0}^{197}} \frac{d\nu}{dk} \frac{dB^{(197}\text{Pt}Ni)}{dV} - 1 = -7(7)\%$$

 single particle
 +0.2%
 Phys. Rev. 123, 1316 (1961)

 core polarization
 -0.6%
 Nucl. Phys. A254, 513 (1975)

Even though a large error, but consistent with theoretical calculations

Hyperfine anomaly ${}^{195}\Delta^{197}$ (same I^{π})

$$I^{\pi}$$
 v₀(MHz) g-factor
¹⁹⁷Pt*Ni* 1/2⁻ 230.7(2) 1.02(4)

¹⁹⁵PtNi $1/2^{-}$ 316.0(65)* +1.2190(1)

*M. Kontani and J. Itoh: J. Phys. Soc. Japan 22 345, (1967)

$${}^{195}\Delta^{197} = \frac{\nu_0^{195}}{\nu_0^{197}} \frac{g({}^{197}Pt)}{g({}^{195}Pt)} - 1 = \pm 15(5)\%$$

If we use the known magnetic moment of ¹⁹⁷Pt, the hyperfine anomaly between ¹⁹⁵Pt and ¹⁹⁷Pt is very large, even though they have same spin-parity. The known magnetic moment of ¹⁹⁷Pt should be wrong.

Magnetic moment of ¹⁹⁷Pt

- The known value of ¹⁹⁷Pt (0.51(2) μ_N) was measured by the atomic beam method. It was reported by Y.W. Chan, *et al.* in Bulletin of the American Physical Society 13, No.6, 895 CE14(1968), but it was not published.
- Using the known hyperfine field of ¹⁹⁵Pt*Ni* (-34(7) T) and the present result, the magnetic moment of ¹⁹⁷Pt can be deduced as:

 μ (¹⁹⁷Pt: 1/2⁻) = 0.45(1) μ _N.

where we ignore the hyperfine anomaly ${}^{195}\varDelta^{197}$ because they have same spin-parity. Using this value, the hyperfine anomaly ${}^{191}\varDelta^{197}$ can be deduced:

 $^{191}\Delta^{197} = 0(2)$ %.

Summary

- We observed the NMR-ON spectra of ¹⁹⁷PtNi.
- Comparing with the result of 191 Pt*Ni*, we deduce the hyperfine anomaly ${}^{191} \varDelta {}^{197} = +13(2)\%$. This value is too large. The known magnetic moment of 197 Pt should be wrong.
- Using the known $B_{hf}(^{195}\text{Pt}Ni)$, the magnetic moment of ¹⁹⁷Pt is deduced as: $\mu(^{197}\text{Pt}) = 0.45(1)$ μ_{N} .
- Using this new value, the hyperfine anomaly is ${}^{191}\varDelta^{197} = 0(2)$ %.

Low temperature nuclear orientation (NMP-ON)

Low temperature nuclear orientation (NMP-ON)

Magnetic Interaction

 \boldsymbol{B}_0

Population $a_m \propto e^{-E_m/kT}$

Boltzmann ditribution

External field dependence of ⁹¹YFe and ^{91m}YFe

