Proton Dynamics in Onedimensional Hydrogen-bonding System in Molecular Co-crystals TMP-D₂ca and DMP-H₂ca

T. Asaji¹, D. Amino¹, N. Tago¹, and M. Mizuno²

¹Department of Chemistry, College of Humanities and Sciences, Nihon University, Tokyo 156-8550, Japan

²Department of Chemistry, Graduated School of Natural Sciences and Technology, Kanazawa University, Kanazawa 920-1192, Japan

NMR/NQR Studies of Intermolecular Hydrogen Transfer Hydrogen bonded carboxylic acid dimer H-transfer with tunneling

¹H NMR S. Nagaoka et al., J. Chem. Phys. 79 (1983) 4694.

NQR of nearby nucleus

³⁵Cl NQR T. Nihei, S. Ishimaru, R. Ikeda, Z. Naturforsch. 55a (2000) 355.

NMR/NQR Studies of Intermolecular Hydrogen Transfer

Hydrogen bonded supramolecular co-crystals

T. Asaji *et al.*, J. Phys.: Condens. Matter 19 (2007) 226203.

NQI2010 Thu 16/09 ID: 20

One-dimensional Hydrogen Bond in TMP-H₂ca and DMP-H₂ca

Tetramethylpyrazine(TMP)-Chloranilic acid(H₂ca) (1:1) and Dimethylpyrazine(DMP)-Chloranilic acid(H₂ca) (1:1)

TMP-H₂ca

DMP-H₂ca

H-bonded supramolecule

neutral

monvalent

TMP-H₂ca: 37.000, 36.961 MHz at 77 K

DMP-H₂ca: 37.301, 37.091 MHz at 77 K

Measure of proton transfer

Freq.(77 K) vs proton transfer correlation

Neutral molecular co-crystal without proton transfer

T. Asaji, J. Seliger, V. Žagar, and H. Ishida Magn. Reson. Chem. 48 (2010) 531-536.

divalent

// MHz

³⁵Cl NQR Frequencies in TMP-H₂ca and TMP-D₂ca

Deuteration Effect

NQR freq. increases by 20-30 kHz *T*_c increases from 83 K to 86 K

 $\, \textcircled{\ } \Delta v = (T_{\rm c} - T)^{\beta}$

 β = 0.34 \pm 0.03 for TMP-H₂ca

 β = 0.29 ± 0.07 for TMP-D₂ca

Structural Change

Two Freqs. in LT phase

Disappearance of center of inversion on TMP molecular center

Structural Change below T_c

 $P2_1/n a = 13.34 b = 4.69$ c = 24.62 Å β =105.4° at 14 K

In the LT phase the H-bonds between $(H_2ca)_A$ and TMP become weaker than that between $(H_2ca)_B$ and TMP

1d H-bonding network along [0,0,1]

M. Prager et al., J. Chem. Phys. 125, 194525 (2006).

³⁵Cl NQR Spin-lattice Relaxation Time in TMP-H₂ca and TMP-D₂ca

- *T*₁ dip due to Structural
 Phase Transition
 - ζ = 0.7 ± 0.1 for TMP-H₂ca

 $\zeta = 0.54 \pm 0.07$ for TMP-D₂ca

♦ A steep T₁ decrease with increasing temperature above 300 K

This result suggests an excitation of a motion which is responsible to EFG fluctuation at the Cl atoms.

NQI2010 Thu 16/09 ID: 20

³⁵Cl NQR Spin-lattice Relaxation Time in TMP-H₂ca and TMP-D₂ca

Large deuteration effect suggest the motion which is responsible for the EFG fluctuation is strongly related to the protonic motion

²H NMR Spin-lattice Relaxation Time in TMP-D₂ca **Definite evidence of the acid hydrogen motion**

The extent of the deuteration was estimated to be 75 % from ²H NMR spectra

The activation energy of the deuteron motion was determined as 49 kJ mol⁻¹

This value shows a very good agreement with that (50 kJ mol⁻¹) obtained from NQR T_1

This is a strong evidence for the EFG fluctuation due to the acid hydrogen motion NQI2010 Thu 16/09 ID: 20

Deuteration and N...H-O Hydrogen Bond

Why E_{a} is increased by the deuteration?

By the deuteration, the H-O bond distance decreases (H-O, 0.938(8) Å; D-O, 0.879(4) Å), while the N…H and N…O distances increase (N...H, 1.824(9) Å; N...D, 1.894(5) Å; N...O, 2.7079(8) and 2.7295(6) Å, respectively, for the normal and deuterated hydrogen bond)

Proton shift toward oxygen atom
Weakening of the H-bonding

NQR freq.-increase by the deuteration also suggests a weakening of the H-bonding

It may be reasonable to assume that the proton transfer motion from the oxygen site to the nitrogen site requires much more energy when the N...H distance increases.

If so, the deuteration will increase the $E_{\rm a}$ since it elongate the N...H distance.

NQI2010 Thu 16/09 ID: 20

³⁵CI NQR Frequencies in DMP-H₂ca

Two frequencies were observed at each temperature studied; 37.301 MHz and 37.090 MHz at 77 K.

Neutral molecular co-crystal without proton transfer

³⁵Cl NQR Spin-lattice Relaxation Time in DMP-H₂ca

The T_1 values of the both NQR lines were almost same and could be explained by the power-law of the temperature: $T_1^{-1} \propto T^{2.3}$ and $T_1^{-1} \propto T^{2.5}$ for the high- and low-frequency lines, respectively. In DMP-H₂ca, the relaxation is dominated by lattice vibration suggesting no transfer motion of proton between the acid and base molecules.

Conclusion

Proton transfer motion in one-dimensional hydrogen-bonded supramolecular compound, tetramethylpyrazine-chloranilic acid (TMP-H₂ca), was revealed by ³⁵Cl NQR and ²H NMR relaxation measurements.

The activation energy for the motion increases from 35 kJ mol⁻¹ to 50 kJ mol⁻¹ by the deuteration.
On the other hand, no transfer motion of proton in the one-dimensional hydrogen bond is expected in 2,6-dimethylpyrazine-chloranilic acid co-crystal (DMP-H₂ca).