Recent Developments in Collinear Laser Spectroscopy at ISOLDE/CERN

W. Nörtershäuser for the

Collaboration

http://www.kernchemie.uni-mainz.de/laser/

Anniversaries 2010 50 years of LASERS 30 years of COLLAPS

model-independent determination of ground state properties

Outline

The Principle of Collinear Laser Spectroscopy

S.L. Kaufman, Opt. Comm. **17** (1976) 309. T. Meier et al., Opt. Comm. **20** (1977) 397

K.-R. Anton, PRL **40** (1978) 642 E.W. Otten, *Nuclear Radii and Moments of unstable Isotopes (1989)*

The Principle of Collinear Laser Spectroscopy

S.L. Kaufman, Opt. Comm. **17** (1976) 309. T. Meier et al., Opt. Comm. **20** (1977) 397

K.-R. Anton, PRL **40** (1978) 642 E.W. Otten, *Nuclear Radii and Moments of unstable Isotopes (1989)*

COLLAPS at ISOLDE

Region 1: Investigating the pfg Shell

Copper and Gallium: Stiffness of the ⁵⁸Ni-Core Evolution in the pfg Shell

Laser

SpHERe

Principle of an RFQ (ISCOOL)

Background Reduction by Bunching

E.Mané, PhD Thesis, University of Manchester

SpHERe

Spin of ⁷³Ga

 $P_{3/2} \rightarrow S_{1/2}$ transition: 6 lines for I=3/23 lines for I=1/2⁷⁷Ga (I=3/2)^(a)⁷¹**Ga** gallium A=71 ⁷⁵Ga I=3/2 ⁷³Ga (b) 73**Ga** ?? 1=3/2 I=1/2 ⁷¹Ga I=3/2 gallium A=73 ⁶⁹Ga I=3/2 ⁶⁷Ga I=3/2 hr h -500 5,000 MHz

B. Cheal et al., Phys Rev Lett 104, 252502 (2009)

Experimental Levels compared to JUN45 and jj4b

Ground-State Spins and Moments

Normal ground state configurations:

²¹ Mg	3 x10 ³ ions/μC		
²⁹ Mg	1.2 x10 ⁶ ions/μC		
³⁰ Mg	4.6 x10 ⁵ ions/μC		
³¹ Mg	1.5 x10 ⁵ ions/μC		
³² Mg	4.2 x10 ⁴ ions/μC		
³³ Mg	5.3 x10 ³ ions/μC		

Optical Pumping and β -NMR

Optical Pumping and β -NMR

β-Nuclear Magnetic Resonance in Mg

REAL ground state configurations:

M. Kowalska *et al.*, Phys. Rev. C **77**, 034307 (2008).

v (kHz

Isotope Shift Determination in the Mg Chain: Techniques

Change in Charge Radii from ²⁴Mg to ³²Mg

Laser

SpHERe

llaps

Light Elements: The Realm of Halo Nuclei

Halo Nuclei

Laser

SpHERe

Charge Radii Determination of Lightest Elements

Experiment AND Theory:	Isotope	δν _{MS} , MHz [Puch08]	δv _{MS} , MHz [Yan 08]
Accuracy of ~ 100 kHz in 40 GHz $(A_{2}/S_{2}) = 3 \times 10^{-6}$	⁷ Be	-49 225.736(35)(9)	-49 225.780 (39)
Experimental:	¹⁰ Be	17 310.437(13)(11)	17 310.442 (13)
Low Yields \rightarrow High sensitivity	¹¹ Be	31 560. <mark>302</mark> (31)(12)	31 560. <mark>087</mark> (24)
Short lifetimes \rightarrow rast			

Experimental Setup

Anticollinear

Results: Absolute Transition Frequencies

Beryllium: Nuclear Charge Radii

Sphere

Electron Scattering: $r_c({}^{9}Be) = 2.519(12) \text{ fm}$, J.A. Jansen et al., Nucl.Phys.A **188**, 337 (1972). Muonic Atoms: $r_c({}^{9}Be) = 2.39(17) \text{ fm}$, L.A. Schaller, Nucl.Phys.A **343**, 333 (1980).

W. Nörtershäuser et al., PRL 102, 062503 (2009).

Beryllium: Nuclear Charge Radii

Laser SpHERe

Electron Scattering: r_c(⁹Be) = 2.519(12) fm, J.A. Jansen et al., Nucl.Phys.A 188, 337 (1972). Muonic Atoms: r_c(⁹Be) = 2.39(17) fm, L.A. Schaller, Nucl.Phys.A 343, 333 (1980).

W. Nörtershäuser et al., PRL 102, 062503 (2009).

Three-Body Model of ¹¹Be

Productive and Emerging CLS Setups

Laser

SpHERe

ollaps

COLLAPS (ISOLDE, HI-ISOLDE), JYFL (Manchester / Jyväskylä): CRIS (ISOLDE) : high sensitivity using Resonance Ionization Spectroscopy; BECOLA (NSCL-MSU) : light in-flight fragments stopped in a gas cell and re-accelerated; CARIBU (ANL): spontaneous fission products of ²⁵²Cf, gas-cell, re-accelerated; TRIUMF: ISOL, lanthanides, electromagnetic moments of ¹¹Li; ALTO: photoinduced fission; LUMIERE (DESIR, SPIRAL2): spallation, fragmentation, fission; TRIGA-LASER (TRIGA-SPEC) → LASPEC @ FAIR Actinides, n-induced fission of ²⁴⁹Cf → "Menu" of FRS 30

TRIGA-SPEC (LASPEC + MATS)

LASPEC / MATS / SHIPTRAP (Prototyping & Development)

W. Nörtershäuser, P. Campbell and the LaSpec collaboration, Hyperfine Interactions 171, 149 (2006) Technical Design Report: D. Rodriguez *et al.*, Eur. Phys. J. Special Topics 183, 1-123 (2010) K. Blaum^{1,2}, P. Lievens⁴, R. Neugart³, G. Neyens⁴, W. Nörtershäuser^{3,5}, C. Geppert^{3,5}, M. L. Bissell⁴, M. Kowalska⁶, D. Yordanov^{1,6}, A. Krieger³, J. Krämer³, M. Zakova³, K. D. Kreim¹, R. Sanchez^{3,5}, M. Hammen³, B. Sieber³, P. Vingerhoets⁴, M. Avgoulea⁴, M. Schug¹, K. Flanagan⁷, J. Billowes⁹, B. Cheal⁸, D.H. Forest⁹, E. Mané⁸, A. Jokinnen¹⁰, I. Moore¹⁰, F. Schmidt-Kaler¹¹, C. Zimmermann¹²

¹Max-Planck-Institut für Kernphysik, Heidelberg, Germany
² Ruprecht-Karls-Universität, Heidelberg, Germany
³Johannes Gutenberg-Universität, Mainz, Germany
⁴Katholieke Universiteit Leuven, Belgium
⁵GSI Darmstadt, Germany
⁶CERN, PH-Dept. / ISOLDE, Switzerland
⁷ I.P.N. Orsay, France
⁸ University of Manchester, United Kingdom
⁹ University of Birmingham, United Kingdom
¹⁰ University of Jyväskylä, Finland
¹¹ University of Tübingen, Germany

Bundesministerium für Bildung und Forschung

Thanks to RILIS Operators and the ISOLDE Technical Group