

Contribution ID: 130

Type: ORAL CONTRIBUTION

## Fe as Local Probe to follow the Competition between Magnetism and Superconductivity in the New Fe-pnictide Superconductors

Tuesday, 14 September 2010 14:00 (20 minutes)

Abstract

## Please specify whether you would prefer an oral or poster contribution.

oral

## **Summary**

The 57Fe Mössbauer spectroscopy has been used to follow the appearance of magnetic order and structural transition induced by composition or temperature changes in some Fe-pnictide compounds. In the case of doped compounds by F, K and Na in CeFeAsO1-xFx, Ba1-xK xFe2As2 and Sr1-x Na x Fe2As2 superconductivity was established. The studies have been performed on some RFeAsO1-xFx (R = Ce, Nd) polycrystalline samples of as well as in Ba0.5K0.5Fe2As2 and Sr0.5Na0.5Fe2As2 single crystal samples. Other Mössbauer studies have shown evidence for magnetism and superconductivity on Sr4V2O6Fe2As2, and Sr4Sc2O6Fe2As2 would show a magnetic ordering without a homogeneous structure. The magnetic transition temperature and the type of transition will be discussed, as well as the coexistence of magnetism and superconductivity.

Primary author: Prof. BAGGIO SAITOVITCH, Elisa (Centro Brasileiro de Pesquisas Fisicas)

**Co-authors:** Prof. SANCHEZ CANDELA, Dalber (Universidade Federal Fluminense); Dr CHENG, G. F. (Beijing National Lab. for Condensed Matter Physics, C. A. of Sciences); Prof. WEN, H. H. (National Laboratory for Superconductivity, Institute of Physics, and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences); Mr MUNEVAR, Julian (Centro Brasileiro de Pesquisas Fisicas); Dr ALZAMORA, Mariella (Centro Brasileiro de Pesquisas Fisicas); Prof. WANG, N. L. (Beijing National Lab. for Condensed Matter Physics, C. A. of Sciences); Prof. CANFIELD, P. C. (Ames Laboratory, US D.O.E and Iowa University); Prof. BUD'KO, S. L. (Ames Laboratory, US D.O.E and Iowa University)

Presenter: Prof. BAGGIO SAITOVITCH, Elisa (Centro Brasileiro de Pesquisas Fisicas)

Session Classification: MAGNETISM AND MAGNETIC MATERIALS: BULK AND THIN FILMS

Track Classification: Magnetism and Magnetic materials - Bulk and thin layers